Recently, biological technology and computer science are of great importance in medical applications. Since one’s breath biomarkers have been proved to be related with diseases, it is possible to detect diseases by a...Recently, biological technology and computer science are of great importance in medical applications. Since one’s breath biomarkers have been proved to be related with diseases, it is possible to detect diseases by analysis of breath samples captured by e-noses. In this paper, a novel medical e-nose system specific to disease diagnosis was used to collect a large-scale breath dataset. Methods for signal processing, feature extracting as well as feature & sensor selection were discussed for detecting diseases on respiratory, metabolic and digestive system. Sequential forward selection is used to select the best combination of sensors and features. The experimental results showed that the proposed system was able to well distinguish healthy samples and samples with different diseases. The results also showed the most significant sensors and features for different tasks, which meets the relationship between diseases and breath biomarkers. By selecting best combination of different sensors and features for different tasks, the e-nose system is shown to be helpful and effective for diseases diagnosis on respiratory, metabolic and digestive system.展开更多
文摘Recently, biological technology and computer science are of great importance in medical applications. Since one’s breath biomarkers have been proved to be related with diseases, it is possible to detect diseases by analysis of breath samples captured by e-noses. In this paper, a novel medical e-nose system specific to disease diagnosis was used to collect a large-scale breath dataset. Methods for signal processing, feature extracting as well as feature & sensor selection were discussed for detecting diseases on respiratory, metabolic and digestive system. Sequential forward selection is used to select the best combination of sensors and features. The experimental results showed that the proposed system was able to well distinguish healthy samples and samples with different diseases. The results also showed the most significant sensors and features for different tasks, which meets the relationship between diseases and breath biomarkers. By selecting best combination of different sensors and features for different tasks, the e-nose system is shown to be helpful and effective for diseases diagnosis on respiratory, metabolic and digestive system.