Ammonia(NH_(3))emission has caused serious environment issues and aroused worldwide concern.The emerging ionic liquid(IL)provides a greener way to efficiently capture NH_(3).This paper provides rigorous process simula...Ammonia(NH_(3))emission has caused serious environment issues and aroused worldwide concern.The emerging ionic liquid(IL)provides a greener way to efficiently capture NH_(3).This paper provides rigorous process simulation,optimization and assessment for a novel NH_(3)deep purification process using IL.The process was designed and investigated by simulation and optimization using ionic liquid[C_(4)im][NTF_(2)]as absorbent.Three objective functions,total purification cost(TPC),total process CO_(2)emission(TPCOE)and thermal efficiency(ηeff)were employed to optimize the absorption process.Process simulation and optimization results indicate that at same purification standard and recovery rate,the novel process can achieve lower cost and CO_(2)emission compared to benchmark process.After process optimization,the optimal functions can achieve 0.02726$/Nm~3(TPC),311.27 kg CO_(2)/hr(TP-COE),and 52.21%(ηeff)for enhanced process.Moreover,compared with conventional process,novel process could decrease over$3 million of purification cost and 10000 tons of CO_(2)emission during the life cycle.The results provide a novel strategy and guidance for deep purification of NH_(3)capture.展开更多
CO_(2)捕集是实现碳减排的重要技术之一。其中,化学吸收法是一种有效的、适用于低CO_(2)分压的CO_(2)捕集技术。开发出一种高效、低能耗、环保的吸收剂是该领域的研究难点和热点。离子液体(ILs)作为一类绿色溶剂,在CO_(2)捕集中具有结...CO_(2)捕集是实现碳减排的重要技术之一。其中,化学吸收法是一种有效的、适用于低CO_(2)分压的CO_(2)捕集技术。开发出一种高效、低能耗、环保的吸收剂是该领域的研究难点和热点。离子液体(ILs)作为一类绿色溶剂,在CO_(2)捕集中具有结构可调节、反应速率快、吸收量高等优势,但存在黏度大、价格昂贵等问题,本工作提出将超强碱离子液体1,8-二氮杂二环[5,4,0]十一碳-7-烯咪唑([HDBU][Im])与单乙醇胺(MEA)复配得到离子液体复配溶剂,来提高吸收剂的CO_(2)吸收量并降低吸收CO_(2)后溶剂的黏度。研究了离子液体浓度、吸收温度、CO_(2)分压等对离子液体复配溶剂捕集CO_(2)性能的影响,测定了离子液体复配溶剂在不同CO_(2)负荷下的密度和黏度等物性。结果表明,30wt%MEA+10wt%[HDBU][Im]具有较好的吸收能力,在40℃下,CO_(2)吸收量达到0.1453 g CO_(2)/g溶剂,且吸收CO_(2)前后溶剂的黏度分别为2.312和4.303 mPa·s,显著低于离子液体吸收剂,是一种具有潜力的CO_(2)捕集溶剂。展开更多
Melamine is an important industrial raw material,and widely used in the production of thermal insulation materials,adhesives,fiber materials and so on.Generally,every 1 ton of melamine produced through decomposition a...Melamine is an important industrial raw material,and widely used in the production of thermal insulation materials,adhesives,fiber materials and so on.Generally,every 1 ton of melamine produced through decomposition and condensation reaction using urea generates about 2.2 tons of tail gas containing about 70%NH_(3)and 29%CO_(2).According to the phase diagram of NH_(3)–CO_(2)-AM(ammonium carbamate),NH_(3)and CO_(2)are easy to react and form AM solid under 63C at ambient pressure,which make it difficult to selective recovery of NH_(3).Water scrubbing is the mostly used technology in industries,but this method demands high energy consumption and discharges a large amount of NH_(3)-containg wastewater,which seriously restricts the sustainable development of industries.展开更多
基金supported by the National Natural Science Foundation of China (Nos.21890760 and 21838010)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No.21921005)the International (Regional)Cooperation and Exchange of the National Natural Science Foundation of China (No.21961160744)。
文摘Ammonia(NH_(3))emission has caused serious environment issues and aroused worldwide concern.The emerging ionic liquid(IL)provides a greener way to efficiently capture NH_(3).This paper provides rigorous process simulation,optimization and assessment for a novel NH_(3)deep purification process using IL.The process was designed and investigated by simulation and optimization using ionic liquid[C_(4)im][NTF_(2)]as absorbent.Three objective functions,total purification cost(TPC),total process CO_(2)emission(TPCOE)and thermal efficiency(ηeff)were employed to optimize the absorption process.Process simulation and optimization results indicate that at same purification standard and recovery rate,the novel process can achieve lower cost and CO_(2)emission compared to benchmark process.After process optimization,the optimal functions can achieve 0.02726$/Nm~3(TPC),311.27 kg CO_(2)/hr(TP-COE),and 52.21%(ηeff)for enhanced process.Moreover,compared with conventional process,novel process could decrease over$3 million of purification cost and 10000 tons of CO_(2)emission during the life cycle.The results provide a novel strategy and guidance for deep purification of NH_(3)capture.
文摘CO_(2)捕集是实现碳减排的重要技术之一。其中,化学吸收法是一种有效的、适用于低CO_(2)分压的CO_(2)捕集技术。开发出一种高效、低能耗、环保的吸收剂是该领域的研究难点和热点。离子液体(ILs)作为一类绿色溶剂,在CO_(2)捕集中具有结构可调节、反应速率快、吸收量高等优势,但存在黏度大、价格昂贵等问题,本工作提出将超强碱离子液体1,8-二氮杂二环[5,4,0]十一碳-7-烯咪唑([HDBU][Im])与单乙醇胺(MEA)复配得到离子液体复配溶剂,来提高吸收剂的CO_(2)吸收量并降低吸收CO_(2)后溶剂的黏度。研究了离子液体浓度、吸收温度、CO_(2)分压等对离子液体复配溶剂捕集CO_(2)性能的影响,测定了离子液体复配溶剂在不同CO_(2)负荷下的密度和黏度等物性。结果表明,30wt%MEA+10wt%[HDBU][Im]具有较好的吸收能力,在40℃下,CO_(2)吸收量达到0.1453 g CO_(2)/g溶剂,且吸收CO_(2)前后溶剂的黏度分别为2.312和4.303 mPa·s,显著低于离子液体吸收剂,是一种具有潜力的CO_(2)捕集溶剂。
文摘Melamine is an important industrial raw material,and widely used in the production of thermal insulation materials,adhesives,fiber materials and so on.Generally,every 1 ton of melamine produced through decomposition and condensation reaction using urea generates about 2.2 tons of tail gas containing about 70%NH_(3)and 29%CO_(2).According to the phase diagram of NH_(3)–CO_(2)-AM(ammonium carbamate),NH_(3)and CO_(2)are easy to react and form AM solid under 63C at ambient pressure,which make it difficult to selective recovery of NH_(3).Water scrubbing is the mostly used technology in industries,but this method demands high energy consumption and discharges a large amount of NH_(3)-containg wastewater,which seriously restricts the sustainable development of industries.