期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
电导法测定寒地杏种质资源的抗寒性
1
作者 宋宏伟 梁英海 +4 位作者 卢明艳 赵晨辉 张艳波 李锋 张冰冰 《农业科学》 2014年第6期111-116,共6页
对国家果树种质公主岭寒地果树圃保存的10份寒地杏种质资源进行抗寒性的鉴定评价,通过切片镜检观察和电导法测定等方法,筛选出一批抗寒杏资源,为杏抗寒性育种提供有价值的亲本材料。结果表明:麦黄杏、龙垦2杏、眉杏、鸡西早熟甜仁、大... 对国家果树种质公主岭寒地果树圃保存的10份寒地杏种质资源进行抗寒性的鉴定评价,通过切片镜检观察和电导法测定等方法,筛选出一批抗寒杏资源,为杏抗寒性育种提供有价值的亲本材料。结果表明:麦黄杏、龙垦2杏、眉杏、鸡西早熟甜仁、大叶大白杏、铃铛杏和桦甸杏可抗?35℃的低温,但眉杏、大叶大白杏和铃铛杏可能出现4级的冻害;同发杏、桦甸红杏、鸡西粉花可抗?40℃的低温。 展开更多
关键词 电导法 测定 杏种质资源 抗寒性
下载PDF
Transcriptional regulation of bark freezing tolerance in apple(Malus domestica Borkh.)
2
作者 yinghai liang Shanshan Wang +10 位作者 Chenhui Zhao Xinwei Ma Yiyong Zhao Jing Shao Yuebo Li Honglian Li Hongwei Song Hong Ma Hao Li Bingbing Zhang liangsheng Zhang 《Horticulture Research》 SCIE 2020年第1期175-190,共16页
Freezing tolerance is a significant trait in plants that grow in cold environments and survive through the winter.Apple(Malus domestica Borkh.)is a cold-tolerant fruit tree,and the cold tolerance of its bark is import... Freezing tolerance is a significant trait in plants that grow in cold environments and survive through the winter.Apple(Malus domestica Borkh.)is a cold-tolerant fruit tree,and the cold tolerance of its bark is important for its survival at low temperatures.However,little is known about the gene activity related to its freezing tolerance.To better understand the gene expression and regulation properties of freezing tolerance in dormant apple trees,we analyzed the transcriptomic divergences in the bark from 1-year-old branches of two apple cultivars,“Golden Delicious”(G)and“Jinhong”(H),which have different levels of cold resistance,under chilling and freezing treatments.“H”can safely overwinter below−30℃in extremely low-temperature regions,whereas“G”experiences severe freezing damage and death in similar environments.Based on 28 bark transcriptomes(from the epidermis,phloem,and cambium)from 1-year-old branches under seven temperature treatments(from 4 to−29°C),we identified 4173 and 7734 differentially expressed genes(DEGs)in“G”and“H”,respectively,between the chilling and freezing treatments.A gene coexpression network was constructed according to this expression information using weighted gene correlation network analysis(WGCNA),and seven biologically meaningful coexpression modules were identified from the network.The expression profiles of the genes from these modules suggested the gene regulatory pathways that are responsible for the chilling and freezing stress responses of“G”and/or“H.”Module 7 was probably related to freezing acclimation and freezing damage in“H”at the lower temperatures.This module contained more interconnected hub transcription factors(TFs)and cold-responsive genes(CORs).Modules 6 and 7 contained C-repeat binding factor(CBF)TFs,and many CBF-dependent homologs were identified as hub genes.We also found that some hub TFs had higher intramodular connectivity(KME)and gene significance(GS)than CBFs.Specifically,most hub TFs in modules 6 and 7 were activated at the beginning of the early freezing stress phase and maintained upregulated expression during the whole freezing stress period in“G”and“H”.The upregulation of DEGs related to methionine and carbohydrate biosynthetic processes in“H”under more severe freezing stress supported the maintenance of homeostasis in the cellular membrane.This study improves our understanding of the transcriptional regulation patterns underlying freezing tolerance in the bark of apple branches. 展开更多
关键词 FREEZING WINTER maintained
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部