The base graph of a simple matroid M = (E, A) is the graph G such that V(G) = A and E(G) = {BB': B, B' B, [B / B'| = 1}, where the same notation is used for the vertices of G and the bases of M. It is prov...The base graph of a simple matroid M = (E, A) is the graph G such that V(G) = A and E(G) = {BB': B, B' B, [B / B'| = 1}, where the same notation is used for the vertices of G and the bases of M. It is proved that the base graph G of connected simple matroid M is Z3-connected if |V(G)| ≥5. We also proved that if M is not a connected simple matroid, then the base graph G of M does not admit a nowhere-zero 3-flow if and only if IV(G)[ =4. Furthermore, if for every connected component Ei ( i≥ 2) of M, the matroid base graph Gi of Mi=MIEi has IV(Gi)|≥5, then G is Z3-connected which also implies that G admits nowhere-zero 3-flow immediately.展开更多
文摘The base graph of a simple matroid M = (E, A) is the graph G such that V(G) = A and E(G) = {BB': B, B' B, [B / B'| = 1}, where the same notation is used for the vertices of G and the bases of M. It is proved that the base graph G of connected simple matroid M is Z3-connected if |V(G)| ≥5. We also proved that if M is not a connected simple matroid, then the base graph G of M does not admit a nowhere-zero 3-flow if and only if IV(G)[ =4. Furthermore, if for every connected component Ei ( i≥ 2) of M, the matroid base graph Gi of Mi=MIEi has IV(Gi)|≥5, then G is Z3-connected which also implies that G admits nowhere-zero 3-flow immediately.