We explore the spin–orbit coupling(SOC) mechanism for structured light in coherent atomic media with low-light-level cross-Kerr nonlinearity. Using the five-level M-type electromagnetic induced transparency(EIT) syst...We explore the spin–orbit coupling(SOC) mechanism for structured light in coherent atomic media with low-light-level cross-Kerr nonlinearity. Using the five-level M-type electromagnetic induced transparency(EIT) system as a prototype, we show that spin–orbit splitting for a weak spinor image can be generated by a weak trigger field carrying orbital angular momentum(OAM) at low-light intensity. By quantum-optical analogy, the paraxial focusing and defocusing of the two pseudo-spin states in the spinor image can be governed by a Pauli-like equation. More importantly, by changing the EIT parameters, especially the topological charge of the weak trigger field, the SOC-induced radial quantization of the spinor image can be rather significant,giving rise to positive or negative OAM-OAM mode separation in free space. This suggests that the separation can be flexibly controlled due to strong image-vortex interaction based on fewphoton cross-Kerr modulation. Our findings may have the potential for all-optical OAM multiplexing and demultiplexing of structured light fields toward few-photon quantum control and multimode communication.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.11574016 and 11204154)。
文摘We explore the spin–orbit coupling(SOC) mechanism for structured light in coherent atomic media with low-light-level cross-Kerr nonlinearity. Using the five-level M-type electromagnetic induced transparency(EIT) system as a prototype, we show that spin–orbit splitting for a weak spinor image can be generated by a weak trigger field carrying orbital angular momentum(OAM) at low-light intensity. By quantum-optical analogy, the paraxial focusing and defocusing of the two pseudo-spin states in the spinor image can be governed by a Pauli-like equation. More importantly, by changing the EIT parameters, especially the topological charge of the weak trigger field, the SOC-induced radial quantization of the spinor image can be rather significant,giving rise to positive or negative OAM-OAM mode separation in free space. This suggests that the separation can be flexibly controlled due to strong image-vortex interaction based on fewphoton cross-Kerr modulation. Our findings may have the potential for all-optical OAM multiplexing and demultiplexing of structured light fields toward few-photon quantum control and multimode communication.