An improved numerical method that can construct Halo/Lissajous orbits in the vicinity of collinear libration points in a full solar system model is investigated. A full solar system gravitational model in the geocentr...An improved numerical method that can construct Halo/Lissajous orbits in the vicinity of collinear libration points in a full solar system model is investigated. A full solar system gravitational model in the geocentric rotating coordinate system with a clear presentation of the angular velocity relative to the inertial coordinate system is proposed. An alternative way to determine patch points in the multiple shooting method is provided based on a dynamical analysis with Poincare′sections. By employing the new patch points and sequential quadratic programming, Halo orbits for L1, L2, and L3points as well as Lissajous orbits for L1and L2points in the EarthMoon system are generated with the proposed full solar system gravitational model to verify the effectiveness of the proposed method.展开更多
Nonlinear normal modes and a numerical iterative approach are applied to study the parametric vibrations of pipes conveying pulsating fluid as an example of gyroscopic continua.The nonlinear non-autonomous governing e...Nonlinear normal modes and a numerical iterative approach are applied to study the parametric vibrations of pipes conveying pulsating fluid as an example of gyroscopic continua.The nonlinear non-autonomous governing equations are transformed into a set of pseudo-autonomous ones by employing the harmonic balance method.The nonlinear normal modes are constructed by the invariant manifold method on the state space and a numerical iterative approach is adopted to obtain numerical solutions,in which two types of initial conditions for the modal coefficients are employed.The results show that both initial conditions can lead to fast convergence.The frequency-amplitude responses with some modal motions in phase space are obtained by the present iterative method.Quadrature phase difference and traveling waves are found in the time-domain complex modal analysis.展开更多
基金the supports of the National Natural Science Foundation of China (Nos.11772009,11402007 and 11672007)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality
文摘An improved numerical method that can construct Halo/Lissajous orbits in the vicinity of collinear libration points in a full solar system model is investigated. A full solar system gravitational model in the geocentric rotating coordinate system with a clear presentation of the angular velocity relative to the inertial coordinate system is proposed. An alternative way to determine patch points in the multiple shooting method is provided based on a dynamical analysis with Poincare′sections. By employing the new patch points and sequential quadratic programming, Halo orbits for L1, L2, and L3points as well as Lissajous orbits for L1and L2points in the EarthMoon system are generated with the proposed full solar system gravitational model to verify the effectiveness of the proposed method.
基金This study was partially funded by the National Natural Science Foundation of China(Grant Nos.11672189,11672007)the postdoctoral fund of Beijing Chaoyang District(Grant No.Q5001015201602)+3 种基金the Program Funded by Liaoning Province Education Administration(Grant No.L2016010)Prof.X.-D.Yang was founded by the Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education,Northeastern University(VCAME201601)Prof.Melnik was funded by the Natural Sciences and Engineering Research Council(NSERC)of Canada,the Canada Research Chair(CRC)program,and the Bizkaia Talent Grant under the Basque Government through the BERC 2014-2017 programas well as Spanish Ministry of Economy and Competitiveness MINECO:BCAM Severo Ochoa excellence accreditation SEV-2013-0323.
文摘Nonlinear normal modes and a numerical iterative approach are applied to study the parametric vibrations of pipes conveying pulsating fluid as an example of gyroscopic continua.The nonlinear non-autonomous governing equations are transformed into a set of pseudo-autonomous ones by employing the harmonic balance method.The nonlinear normal modes are constructed by the invariant manifold method on the state space and a numerical iterative approach is adopted to obtain numerical solutions,in which two types of initial conditions for the modal coefficients are employed.The results show that both initial conditions can lead to fast convergence.The frequency-amplitude responses with some modal motions in phase space are obtained by the present iterative method.Quadrature phase difference and traveling waves are found in the time-domain complex modal analysis.