ZnO doped Pt/CeO2 nanocomposites were prepared by electrospinning and reduction impregnation.Xray diffraction(XRD),transmission electron microscopy(TEM),energy disperse spectroscopy(EDS) and X-ray photoelectron ...ZnO doped Pt/CeO2 nanocomposites were prepared by electrospinning and reduction impregnation.Xray diffraction(XRD),transmission electron microscopy(TEM),energy disperse spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the nanocomposites.It is observed that ZnO and CeO2 form the hexagonal wurtzite phase and cubic fluorite phase in the nanocomposite,respectively,whilst Pt nanoparticles(NPs) with the number-averaged size of ca.3.1 nm are uniformly distributed on the surface of nanofibers.The mass fraction of Pt NPs in the nanocomposites is about 10 wt%.The doping of ZnO is effective to promote reactive oxygen species,surface reaction sites and the interaction between Pt and oxides.The catalytic performance of nanocomposites was evaluated by the methanol electro-oxidation.indexed with the catalytic activity,stability of catalyst.As a result,it is found that the nanocomposite exhibits much higher activity and stability for methanol oxidation than the undoped Pt/CeO2 catalyst.展开更多
基金Project supported by the National Natural Science Foundation of China(21475021,21427807)the Natural Science Foundation of Jiangsu Province(BK20141331)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘ZnO doped Pt/CeO2 nanocomposites were prepared by electrospinning and reduction impregnation.Xray diffraction(XRD),transmission electron microscopy(TEM),energy disperse spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the nanocomposites.It is observed that ZnO and CeO2 form the hexagonal wurtzite phase and cubic fluorite phase in the nanocomposite,respectively,whilst Pt nanoparticles(NPs) with the number-averaged size of ca.3.1 nm are uniformly distributed on the surface of nanofibers.The mass fraction of Pt NPs in the nanocomposites is about 10 wt%.The doping of ZnO is effective to promote reactive oxygen species,surface reaction sites and the interaction between Pt and oxides.The catalytic performance of nanocomposites was evaluated by the methanol electro-oxidation.indexed with the catalytic activity,stability of catalyst.As a result,it is found that the nanocomposite exhibits much higher activity and stability for methanol oxidation than the undoped Pt/CeO2 catalyst.