DNA methyltransferase(MTase)activity detection has received increasing attention as a promising biomarker and therapeutic target.However,most of these detection methods rely on endonuclease digestion and signal groups...DNA methyltransferase(MTase)activity detection has received increasing attention as a promising biomarker and therapeutic target.However,most of these detection methods rely on endonuclease digestion and signal groups labeling.Herein,we present a novel platform for sensing DNA MTase activity that overcomes these limitations.Our approach is both endonuclease-free and label-free,utilizing a combination of a high-affinity streptavidin-methyl-CpG-binding domain(SA-MBD)protein and surface plasmon resonance(SPR)technology.The SA-MBD protein specifically recognizes a hairpin probe containing methylated CpG sites,which is treated with M.SssI MTase.This recognition event generates a corresponding SPR response signal.The limit of detection is as low as 0.016 U/mL,owing to the high-affinity of the SA-MBD protein.Notably,we have demonstrated the feasibility of our method for M.SssI MTase activity analysis in serum and inhibitor screening,which implies the potential prospects for biomedical research.展开更多
基金funded by the National Natural Science Foundation of China(61901527,82300051)National Key Research and Development Program of China(2022YFF0710803,2022YFF0710800)Fundamental Research Funds for the Central Universities(2632021ZD02).
文摘DNA methyltransferase(MTase)activity detection has received increasing attention as a promising biomarker and therapeutic target.However,most of these detection methods rely on endonuclease digestion and signal groups labeling.Herein,we present a novel platform for sensing DNA MTase activity that overcomes these limitations.Our approach is both endonuclease-free and label-free,utilizing a combination of a high-affinity streptavidin-methyl-CpG-binding domain(SA-MBD)protein and surface plasmon resonance(SPR)technology.The SA-MBD protein specifically recognizes a hairpin probe containing methylated CpG sites,which is treated with M.SssI MTase.This recognition event generates a corresponding SPR response signal.The limit of detection is as low as 0.016 U/mL,owing to the high-affinity of the SA-MBD protein.Notably,we have demonstrated the feasibility of our method for M.SssI MTase activity analysis in serum and inhibitor screening,which implies the potential prospects for biomedical research.