A series of PtCuCeMgAl quintuple hydrotalcite-like compounds with different Ce contents were synthesized by one-pot method. After calcining and reduction, CeO_2-modified Mg(Al)O-supported Pt–Cu alloy catalysts were o...A series of PtCuCeMgAl quintuple hydrotalcite-like compounds with different Ce contents were synthesized by one-pot method. After calcining and reduction, CeO_2-modified Mg(Al)O-supported Pt–Cu alloy catalysts were obtained. To understand the effect of Cu and Ce, the structure and physico-chemistry properties of the catalysts were characterized and analyzed, and the catalytic behaviors were investigated in a direct dehydrogenation of propane to propene. The results show that the Pt^(4+), Cu^(2+), and Ce^(3+) ions can be incorporated into the brucite-like layers and the Ce content significantly affects the interaction strength between Pt and Cu and the dehydrogenation performance of propane. Under the reaction conditions, the highest propane conversion(45%) with 89% selectivity to propene and a 40% propene yield were achieved with a 0.3 wt% Ce-modified PtCu/Mg(Al)O catalyst. The improved catalytic performance is related to the easy formation of Pt–Cu alloy phase, excellent resistance to sintering, and coke deposits of active components modified by CeO_2.展开更多
In this study, a series of novel Pt-Ni bimetallic catalysts supported on LaFeO_3/SiO_2 with different amounts of Ni were prepared by the lattice atomic-confined reduction of LaFe_(1-x)(Ni, Pt)_xO_3/SiO_2 perovskite pr...In this study, a series of novel Pt-Ni bimetallic catalysts supported on LaFeO_3/SiO_2 with different amounts of Ni were prepared by the lattice atomic-confined reduction of LaFe_(1-x)(Ni, Pt)_xO_3/SiO_2 perovskite precursors and applied in isobutane dehydrogenation to isobutene reaction. The catalysts were characterized by X-ray diffraction, H_2-temperature-programmed reduction, Brunauer-Emmett-Teller analysis, transmission electron microscopy, energy dispersive X-ray, CO chemisorption, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The as-synthesized Pt-Ni bimetallic catalysts possessed smaller most probable particle size with tunable Pt-Ni interaction, depending on the Ni content. The catalyst with Ni content of 3.0 wt% showed excellent activity and stability(the isobutane conversion and isobutene selectivity remained at about 38% and 92%, respectively, after 310 min) for the isobutane dehydrogenation reaction. It also provided approximately six times turnover frequency of the catalyst without Ni. The excellent activity and stability of the 3.0 wt% Ni-containing catalyst can be attributed to its small metal nanoparticles with high dispersion and suitable Pt-Ni interaction. Moreover, the Pt(Ni)-LaFeO_3/SiO_2 catalyst with Ni content of 3.0 wt% had been run for more than 35 h without obvious loss of activity,indicating its long-term stability, and the decrease in the Pt-Ni interaction that accompanied the formation of the FeNi alloy phase was thought to be responsible for the slight decrease in activity.展开更多
Aqueous phase of acids as catalysts for the desulfurization of gasoline by condensation of thiophenes with form- aldehyde in a biphasic system was investigated. Two types of model gasoline with and without aromatics a...Aqueous phase of acids as catalysts for the desulfurization of gasoline by condensation of thiophenes with form- aldehyde in a biphasic system was investigated. Two types of model gasoline with and without aromatics and olefins were employed in this work. The desulfurization rates were above 90% on these two types of model gasoline using formic acid and HaPW12O40 (0.8 mol·L-1), indicating that the presence of aromatics and olefins has no effect on the desulfurization rate. High temperature (above 90 ℃) was more favorable to the process for desulfurization. Four hours was considered to be the proper treating time for the sulfur removal. In addition, aqueous phase of acids could be recycled at least 4 times without decreasing desulfurization rate. Finally, the possible process for the integration of condensation desulfurization into the existing refinery process for the production of gasoline with low sulfur content was proposed.展开更多
Stable Pb isotopes in surface and core sediments were determined to identify the sources of Pb contaminants in the northern East China Sea(ECS).The Bayesian stable isotope mixing model was used to quantify the contrib...Stable Pb isotopes in surface and core sediments were determined to identify the sources of Pb contaminants in the northern East China Sea(ECS).The Bayesian stable isotope mixing model was used to quantify the contributions of Pb sources.The results show that since the late 1980 s,ratios of^(207)Pb/^(206)Pb and^(208)Pb/^(206)Pb increased in the top 34-cm sediment shown in the coastal core samples,reflecting elevated anthropogenic Pb input in coastal sea.Seaward increase of^(207)Pb/^(206)Pb and^(208)Pb/^(206)Pb ratios in surface sediments reveals that anthropogenic Pb came mainly via atmospheric transmission into the ECS.Anthropogenic sources accounted for 12.0%-21.1%of the total Pb in sediments after the 1990 s.Coal combustion was the largest anthropogenic contributor(47.5%±18.8%),and Pb mining and smelting,cement production,and vehicle exhaust/gasoline contributed 23.2%±7.1%,19.0%±13.0%,and 10.3%±6.9%,respectively.The proportions of the anthropogenic sources gradually increased while geogenic source(riverine sediment)decreased from the coast to the outer shelf.This study demonstrated that the significant influence of atmospheric input of Pb contaminants into the ECS,and also the urgent need to control coal combustion and Pb discharge from industrial dust and fume emission in China.It also highlights the promising application of the Simmr model to quantify the proportions of multiple sources of trace elements in an environment.展开更多
The aim of this study was to examine the effectiveness of plasma-activated water(PAW)for inactivating Escherichia coli(E.col)and retention of key quality factors for kale.Different plasma discharge times(1,2,3,4,5,and...The aim of this study was to examine the effectiveness of plasma-activated water(PAW)for inactivating Escherichia coli(E.col)and retention of key quality factors for kale.Different plasma discharge times(1,2,3,4,5,and 10 min)and different exposure times(2,4,6,8,10,and 15 min)were used to investigate the inactivation effect of E.coli spot-inoculated on kale.The influence of different exposure times on the pH,hardness and color of kale was studied post-treatment.In addition,the effects of PAW on the shelf-life of kale over 12 d of storage at 4℃ were investigated.The results showed that after the treatment of 5-PAW-8(8 min treatment by PAW generated by 5 min plasma discharge),the population of E.coli on kale was reduced by approximately 1.55 log colony-forming units(CFU)/g and the changes in pH,hardness and color of kale were not significant(P>0.05).During the storage period after 5-PAW-8 treatment,the hardness,weight loss,color,surface morphology and ascorbic acid were found to be better than those of the two control groups(P<0.05).Furthermore,no significant changes were observed in pH values,the content of total phenols,or 1,1-dipheny1-2-picrylhydrazyl radical scavenging capacity(P>0.05).It is indicated that PAW treatment is a promising methodfor improving microbiological safety and extending the shelf-life of kale.展开更多
The high population and concrete environment alter urban areas by changing temperature, rainfall runoff, and water resource utilization activities. This study was conducted to investigate the water quality features of...The high population and concrete environment alter urban areas by changing temperature, rainfall runoff, and water resource utilization activities. This study was conducted to investigate the water quality features of the Yongding Diversion Channel in Beijing, China, and its relationship with rainfall and urban development. Monthly water quality data were obtained from April to October of 2004 at monitoring sites of Sanjiadian, Gaojing, Luodaozhuang, and Yuyuangtan. The monthly water quality grades from 2007 to 2011 were also investigated and compared with those of other rivers. Dissolved oxygen and pH showed greater decreases after one or two moderate rainfall events than several light rainfall events. The potassium permanganate index (CODMn), ammonia nitrogen (NH3-N) and total phosphorus (TP) increased more after several light rainfall events than after one or two moderate or heavy rainfall events. Pollutant concentrations (CODMn, NH3-N, TP) in downstream regions showed greater changes than those in upstream areas after heavy rainfall events. Intense human activities around the channel greatly influenced the water quality of the channel in rainy season because of runoff pollution; however, heavy rainfall had a strong dilution effect on the pollutant concentrations in rivers. Overall, urban development has obviously deteriorated the water quality of the Yongding Diversion Channel as indicated by an increase in the water quality index from 3.22 in 2008 to 4.55 in 2010. The Pearson correlation between monthly rainfall and water quality indices from 2007 to 2011 ranged from 0.1286 to 0.6968, generally becoming weaker as rainfall and rainfall runoff became more random and extreme.展开更多
The deposition and the re-suspension of particulate matter(PM) in urban areas are the key processes that contribute not only to stormwater pollution, but also to air pollution. However, investigation of the deposition...The deposition and the re-suspension of particulate matter(PM) in urban areas are the key processes that contribute not only to stormwater pollution, but also to air pollution. However, investigation of the deposition and the re-suspension of PM is challenging because of the difficulties in distinguishing between the resuspended and the deposited PM. This study created two Bayesian Networks(BN) models to explore the deposition and the re-suspension of PM as well as the important influential factors. The outcomes of BN modelling revealed that deposition and re-suspension of PM10 occurred under both, high-traffic and low-traffic conditions, and the re-suspension of PM2.5 occurred under low-traffic conditions. The deposition of PM10 under low-volume traffic condition is 1.6 times higher than under highvolume traffic condition, which is attributed to the decrease in PM10 caused by relatively higher turbulence under high-volume traffic conditions. PM10 is more easily resuspended from road surfaces compared to PM2.5 as the particles which larger than the thickness of the laminar airflow over the road surface are more easily removed from road surfaces. The increase in wind speed contributes to the increase in PM build-up by transporting particulates from roadside areas to the road surfaces and the airborne PM2.5 and PM10 increases with the increase in relative humidity. The study outcomes provide a step improvement in the understanding of the transfer processes of PM2.5 and PM10 between atmosphere and urban road surfaces, which in turn will contribute to the effective design of mitigation measures for urban stormwater and air pollution.展开更多
Urban water resources have been facing significant pressure from population growth, urbanization, and climate change. A system dynamics urban water management model was proposed to simulate the dynamic interactions be...Urban water resources have been facing significant pressure from population growth, urbanization, and climate change. A system dynamics urban water management model was proposed to simulate the dynamic interactions between urban water demands and society, economy, climate, and water conservation. The residents' water conseration willingness was incorporated in the model and water-saving effects were quantified. The simulation results for Macao showed that population size was the main driving force for urban water demand. The change of temperature and precipitation has obvious effects on the landscape water demand. The water demand output is sensitive to the change in population, per capita demand, and temperature. Increased precipitation will reduce urban water demand and increased economic growth will increase water demand. By implementing integrated water conservation measures and imoroved water conservation willinmaess, water demand could be reduced bv 17.5%.展开更多
基金supported by the National Natural Science Foundation of China(No.21776214)the Natural Science Foundation of Jiangsu Province(No.BK20161166)the State Key Laboratory of Chemical Resource Engineering
文摘A series of PtCuCeMgAl quintuple hydrotalcite-like compounds with different Ce contents were synthesized by one-pot method. After calcining and reduction, CeO_2-modified Mg(Al)O-supported Pt–Cu alloy catalysts were obtained. To understand the effect of Cu and Ce, the structure and physico-chemistry properties of the catalysts were characterized and analyzed, and the catalytic behaviors were investigated in a direct dehydrogenation of propane to propene. The results show that the Pt^(4+), Cu^(2+), and Ce^(3+) ions can be incorporated into the brucite-like layers and the Ce content significantly affects the interaction strength between Pt and Cu and the dehydrogenation performance of propane. Under the reaction conditions, the highest propane conversion(45%) with 89% selectivity to propene and a 40% propene yield were achieved with a 0.3 wt% Ce-modified PtCu/Mg(Al)O catalyst. The improved catalytic performance is related to the easy formation of Pt–Cu alloy phase, excellent resistance to sintering, and coke deposits of active components modified by CeO_2.
基金supported by National Natural Science Foundation of China (No. 21776214)State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, China
文摘In this study, a series of novel Pt-Ni bimetallic catalysts supported on LaFeO_3/SiO_2 with different amounts of Ni were prepared by the lattice atomic-confined reduction of LaFe_(1-x)(Ni, Pt)_xO_3/SiO_2 perovskite precursors and applied in isobutane dehydrogenation to isobutene reaction. The catalysts were characterized by X-ray diffraction, H_2-temperature-programmed reduction, Brunauer-Emmett-Teller analysis, transmission electron microscopy, energy dispersive X-ray, CO chemisorption, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The as-synthesized Pt-Ni bimetallic catalysts possessed smaller most probable particle size with tunable Pt-Ni interaction, depending on the Ni content. The catalyst with Ni content of 3.0 wt% showed excellent activity and stability(the isobutane conversion and isobutene selectivity remained at about 38% and 92%, respectively, after 310 min) for the isobutane dehydrogenation reaction. It also provided approximately six times turnover frequency of the catalyst without Ni. The excellent activity and stability of the 3.0 wt% Ni-containing catalyst can be attributed to its small metal nanoparticles with high dispersion and suitable Pt-Ni interaction. Moreover, the Pt(Ni)-LaFeO_3/SiO_2 catalyst with Ni content of 3.0 wt% had been run for more than 35 h without obvious loss of activity,indicating its long-term stability, and the decrease in the Pt-Ni interaction that accompanied the formation of the FeNi alloy phase was thought to be responsible for the slight decrease in activity.
基金Supported by the National Natural Science Foundation of China(No.20126008)
文摘Aqueous phase of acids as catalysts for the desulfurization of gasoline by condensation of thiophenes with form- aldehyde in a biphasic system was investigated. Two types of model gasoline with and without aromatics and olefins were employed in this work. The desulfurization rates were above 90% on these two types of model gasoline using formic acid and HaPW12O40 (0.8 mol·L-1), indicating that the presence of aromatics and olefins has no effect on the desulfurization rate. High temperature (above 90 ℃) was more favorable to the process for desulfurization. Four hours was considered to be the proper treating time for the sulfur removal. In addition, aqueous phase of acids could be recycled at least 4 times without decreasing desulfurization rate. Finally, the possible process for the integration of condensation desulfurization into the existing refinery process for the production of gasoline with low sulfur content was proposed.
基金the Open Fund of CAS Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences(No.KLMEES201805)the National Natural Science Foundation of China(No.41406087)the"First Class Fishery Discipline"Program in Shandong Province,China。
文摘Stable Pb isotopes in surface and core sediments were determined to identify the sources of Pb contaminants in the northern East China Sea(ECS).The Bayesian stable isotope mixing model was used to quantify the contributions of Pb sources.The results show that since the late 1980 s,ratios of^(207)Pb/^(206)Pb and^(208)Pb/^(206)Pb increased in the top 34-cm sediment shown in the coastal core samples,reflecting elevated anthropogenic Pb input in coastal sea.Seaward increase of^(207)Pb/^(206)Pb and^(208)Pb/^(206)Pb ratios in surface sediments reveals that anthropogenic Pb came mainly via atmospheric transmission into the ECS.Anthropogenic sources accounted for 12.0%-21.1%of the total Pb in sediments after the 1990 s.Coal combustion was the largest anthropogenic contributor(47.5%±18.8%),and Pb mining and smelting,cement production,and vehicle exhaust/gasoline contributed 23.2%±7.1%,19.0%±13.0%,and 10.3%±6.9%,respectively.The proportions of the anthropogenic sources gradually increased while geogenic source(riverine sediment)decreased from the coast to the outer shelf.This study demonstrated that the significant influence of atmospheric input of Pb contaminants into the ECS,and also the urgent need to control coal combustion and Pb discharge from industrial dust and fume emission in China.It also highlights the promising application of the Simmr model to quantify the proportions of multiple sources of trace elements in an environment.
基金supported by the Grants from the China NationalCenterfor Food Safety Risk Assessment (No.20210349-6602421216)the Qingdao Science and Technology Demonstration and Guidance Project (No.21-1-4-ny-17-nsh)the High-level Talent Research Fund of Qingdao Agricultural University (No.6631115043),China。
文摘The aim of this study was to examine the effectiveness of plasma-activated water(PAW)for inactivating Escherichia coli(E.col)and retention of key quality factors for kale.Different plasma discharge times(1,2,3,4,5,and 10 min)and different exposure times(2,4,6,8,10,and 15 min)were used to investigate the inactivation effect of E.coli spot-inoculated on kale.The influence of different exposure times on the pH,hardness and color of kale was studied post-treatment.In addition,the effects of PAW on the shelf-life of kale over 12 d of storage at 4℃ were investigated.The results showed that after the treatment of 5-PAW-8(8 min treatment by PAW generated by 5 min plasma discharge),the population of E.coli on kale was reduced by approximately 1.55 log colony-forming units(CFU)/g and the changes in pH,hardness and color of kale were not significant(P>0.05).During the storage period after 5-PAW-8 treatment,the hardness,weight loss,color,surface morphology and ascorbic acid were found to be better than those of the two control groups(P<0.05).Furthermore,no significant changes were observed in pH values,the content of total phenols,or 1,1-dipheny1-2-picrylhydrazyl radical scavenging capacity(P>0.05).It is indicated that PAW treatment is a promising methodfor improving microbiological safety and extending the shelf-life of kale.
基金supported by the National Science Foundation for Innovative Research Group (No. 51121003)the Open Research Fund Program of Key Laboratory of Urban Stormwater System and Water Environment (BUCEA)+1 种基金the National Science Foundation of China (No. 51278054)the FST Short Term PD & VF Scheme 2013 and MYRG072(Y1-L2)-FST13-LIC from University of Macao
文摘The high population and concrete environment alter urban areas by changing temperature, rainfall runoff, and water resource utilization activities. This study was conducted to investigate the water quality features of the Yongding Diversion Channel in Beijing, China, and its relationship with rainfall and urban development. Monthly water quality data were obtained from April to October of 2004 at monitoring sites of Sanjiadian, Gaojing, Luodaozhuang, and Yuyuangtan. The monthly water quality grades from 2007 to 2011 were also investigated and compared with those of other rivers. Dissolved oxygen and pH showed greater decreases after one or two moderate rainfall events than several light rainfall events. The potassium permanganate index (CODMn), ammonia nitrogen (NH3-N) and total phosphorus (TP) increased more after several light rainfall events than after one or two moderate or heavy rainfall events. Pollutant concentrations (CODMn, NH3-N, TP) in downstream regions showed greater changes than those in upstream areas after heavy rainfall events. Intense human activities around the channel greatly influenced the water quality of the channel in rainy season because of runoff pollution; however, heavy rainfall had a strong dilution effect on the pollutant concentrations in rivers. Overall, urban development has obviously deteriorated the water quality of the Yongding Diversion Channel as indicated by an increase in the water quality index from 3.22 in 2008 to 4.55 in 2010. The Pearson correlation between monthly rainfall and water quality indices from 2007 to 2011 ranged from 0.1286 to 0.6968, generally becoming weaker as rainfall and rainfall runoff became more random and extreme.
基金the support provided by the Inno-vative Research Group of the National Natural Science Foundation of China (No. 51721093)the National Key Research&Devel-opment Program (Nos. 2016YFA0602304,2016YFC0802500)+1 种基金the State Key Program of National Natural Science of China (No. 41530635)the Interdisciplinary Research Funds of Beijing Normal University。
文摘The deposition and the re-suspension of particulate matter(PM) in urban areas are the key processes that contribute not only to stormwater pollution, but also to air pollution. However, investigation of the deposition and the re-suspension of PM is challenging because of the difficulties in distinguishing between the resuspended and the deposited PM. This study created two Bayesian Networks(BN) models to explore the deposition and the re-suspension of PM as well as the important influential factors. The outcomes of BN modelling revealed that deposition and re-suspension of PM10 occurred under both, high-traffic and low-traffic conditions, and the re-suspension of PM2.5 occurred under low-traffic conditions. The deposition of PM10 under low-volume traffic condition is 1.6 times higher than under highvolume traffic condition, which is attributed to the decrease in PM10 caused by relatively higher turbulence under high-volume traffic conditions. PM10 is more easily resuspended from road surfaces compared to PM2.5 as the particles which larger than the thickness of the laminar airflow over the road surface are more easily removed from road surfaces. The increase in wind speed contributes to the increase in PM build-up by transporting particulates from roadside areas to the road surfaces and the airborne PM2.5 and PM10 increases with the increase in relative humidity. The study outcomes provide a step improvement in the understanding of the transfer processes of PM2.5 and PM10 between atmosphere and urban road surfaces, which in turn will contribute to the effective design of mitigation measures for urban stormwater and air pollution.
基金supported by the State Key Program of National Natural Science of China (No. 41530635)the MYRG072 (Y1-L2)-FST13-LIC+1 种基金the National Science Foundation of China (No. 51278054)the Fund for Innovative Research Group of the National Natural Science Foundation of China (No. 51421065)
文摘Urban water resources have been facing significant pressure from population growth, urbanization, and climate change. A system dynamics urban water management model was proposed to simulate the dynamic interactions between urban water demands and society, economy, climate, and water conservation. The residents' water conseration willingness was incorporated in the model and water-saving effects were quantified. The simulation results for Macao showed that population size was the main driving force for urban water demand. The change of temperature and precipitation has obvious effects on the landscape water demand. The water demand output is sensitive to the change in population, per capita demand, and temperature. Increased precipitation will reduce urban water demand and increased economic growth will increase water demand. By implementing integrated water conservation measures and imoroved water conservation willinmaess, water demand could be reduced bv 17.5%.