Flexible conductive fibers are essential for wearable electronics and smart electronic textiles.However,in complex operating conditions,conductive fibers will inevitably fracture or damage.Herein,we have developed an ...Flexible conductive fibers are essential for wearable electronics and smart electronic textiles.However,in complex operating conditions,conductive fibers will inevitably fracture or damage.Herein,we have developed an elastic conductive self-healable fiber(C-SHF),of which the electrical and mechanical properties can efficiently heal in a wide operating range,including room temperature,underwater,and low temperature.This advantage can be owed to the combination of reversible covalent imine bond and disulfide bond,as well as the instantaneous self-healing ability of liquid metal.The C-SHF,with stretchability,conductivity stability,and universal self-healing properties,can be used as an electrical signal transmission line at high strain and under different operating conditions.Besides,C-SHF was assembled into a double-layer capacitor structure to construct a self-healable sensor,which can effectively respond to pressure as a wearable motion detector.展开更多
Interest in mung bean(Vigna radiata L.) as a functional food is growing; however, studies on the nutritional composition of major mung bean cultivars planted in China are limited.Twenty Chinese mung bean cultivars wer...Interest in mung bean(Vigna radiata L.) as a functional food is growing; however, studies on the nutritional composition of major mung bean cultivars planted in China are limited.Twenty Chinese mung bean cultivars were collected and their nutritional compositions including starch, fat, protein, and phytochemicals were analyzed. The cultivars were found to have a high amount of resistant starch, accounting for 16.1%–22.3% of total starch, and balanced amino acid constitutions. Palmitic acid and linoleic acid were the two dominant fatty acids, accounting for respectively 32.4% and 36.1% of all of the assayed fatty acids. Four bound phenolic acids(syringic, caffeic, p-coumaric, and ferulic acids) and two free phenolic acids(caffeic and ferulic acids) were identified by HPLC. The antioxidant activity of 70%ethanol extracts from the 20 mung bean cultivars was evaluated. Their DPPH and ABTS+free-radical-scavenging capacity ranged from 28.13 ± 2.24 to 35.68 ± 0.71 μmol g-1and from3.82 ± 0.25 to 13.44 ± 1.76 μmol g-1, respectively. Significant positive correlations of ABTS+free-radical-scavenging capacity with total phenolic acids and total flavonoid contents were observed. These results suggest that Chinese mung bean cultivars are rich in balanced nutrients and that their phytochemicals should be considered as potential sources of natural antioxidants.展开更多
The objective of this study was to characterize the phaseolin type and a-amylase(αAI) level in common bean(Phaseolus vidgaris L.) accessions deposited in the Chinese National Genebank.The 40 accessions sampled were c...The objective of this study was to characterize the phaseolin type and a-amylase(αAI) level in common bean(Phaseolus vidgaris L.) accessions deposited in the Chinese National Genebank.The 40 accessions sampled were common varieties originating in Asia,North America,South America,Europe,and Africa.No Inca(I-) phaseolin was observed in the accessions.Only four accessions contained Tendergreen(T-) phaseolin and the remaining36 contained Sanilac(S-) phaseolin.aAI proteins extracted from nine accessions showed higher a-amylase inhibitory activity than the control(Phase 2,IC_(50) = 0.65 μg).These common bean accessions have potential use as nutraceutical ingredients.展开更多
Wood is an invaluable asset to human society due to its renewable nature,making it suitable for both sustainable energy production and material manufacturing.Additionally,wood derived from forest trees plays a crucial...Wood is an invaluable asset to human society due to its renewable nature,making it suitable for both sustainable energy production and material manufacturing.Additionally,wood derived from forest trees plays a crucial role in sequestering a significant portion of the carbon dioxide fixed during photosynthesis by terrestrial plants.Nevertheless,with the expansion of the global population and ongoing industrialization,forest coverage has been substantially decreased,resulting in significant challenges for wood production and supply.Wood production practices have changed away from natural forests toward plantation forests.Thus,understanding the underlying genetic mechanisms of wood formation is the foundation for developing high-quality,fast-growing plantation trees.Breeding ideal forest trees for wood production using genetic technologies has attracted the interest of many.Tremendous studies have been carried out in recent years on the molecular,genetic,and cell-biological mechanisms of wood formation,and considerable progress and findings have been achieved.These studies and findings indicate enormous possibilities and prospects for tree improvement.This review will outline and assess the cellular and molecular mechanisms of wood formation,as well as studies on genetically improving forest trees,and address future development prospects.展开更多
N-Acetylneuraminic acid(Neu5Ac),the most common type of Sia,generally acts as the terminal sugar in cell surface glycans,glycoconjugates,oligosaccharides,lipo-oligosaccharides,and polysaccharides,thus exerting numerou...N-Acetylneuraminic acid(Neu5Ac),the most common type of Sia,generally acts as the terminal sugar in cell surface glycans,glycoconjugates,oligosaccharides,lipo-oligosaccharides,and polysaccharides,thus exerting numerous physiological functions.The extensive applications of Neu5Ac in the food,cosmetic,and pharmaceutical industries make large-scale production of this chemical desirable.Biosynthesis which is associated with important application potential and environmental friendliness has become an indispensable approach for large-scale synthesis of Neu5Ac.In this review,the physiological roles of Neu5Ac was first summarized in detail.Second,the safety evaluation,regulatory status,and applications of Neu5Ac were discussed.Third,enzyme-catalyzed preparation,whole-cell biocatalysis,and microbial de novo synthesis of Neu5Ac were comprehensively reviewed.In addition,we discussed the main challenges of Neu5Ac de novo biosynthesis,such as screening and engineering of key enzymes,identifying exporters of intermediates and Neu5Ac,and balancing cell growth and biosynthesis.The corresponding strategies and systematic strategies were proposed to overcome these challenges and facilitate Neu5Ac industrial-scale production.展开更多
Sulfur dioxide is one of the main causes of air pollution such as acid rain and photochemical smog,and its pollution control and resource utilization become an important research direction of air pollution control,The...Sulfur dioxide is one of the main causes of air pollution such as acid rain and photochemical smog,and its pollution control and resource utilization become an important research direction of air pollution control,The active component La-Ce-O_(x) is loaded on SiO_(2),γ-Al_(2)O_(3),TiO_(2) and ZrO_(2),and the La-Ce-Ox@ZrO_(2)exhibits the best catalytic activity.By adjusting the loading amount of La-Ce-O_(x),La-Ce-Ox@ZrO_(2) with different mass fractions was prepared.The results show that the activity of 15%La-Ce-Ox@ZrO_(2)catalyst is the best.The SO_(2)conversion is 100%,and the S yield and S selectivity are more than 96% at 350℃.According to the analysis results of H_(2)-TPR,CO_(2)-TPD and NH_(3)-TPD,ZrO_(2) as a support not only reduces the acidity of the catalyst,but also improves the weak alkaline sites of the catalyst,which is conducive to the adsorption and activation of SO2molecules at low temperature.The incorporation of La and Ce increases the oxygen concentration adsorbed on the catalyst.The strong interaction between the support ZrO_(2) and the active component La-Ce-Oxis conducive to the electron transfer between the active component and the support,and improves the activity of the catalyst.For the 15%La-Ce-O_(x)@ZrO_(2),the main reaction intermediates are weakly adsorbed SO_(2)(SO_(3)^(2-)),bicoordinated CO_(3)^(2-),monodentate carbonate and CO in the gas phase.Therefore,the catalytic reaction follows both L-H and E-R mechanisms.展开更多
Text, as one of the most influential inventions of humanity, has played an important role in human life, so far from ancient times. The rich and precise information embod- ied in text is very useful in a wide range of...Text, as one of the most influential inventions of humanity, has played an important role in human life, so far from ancient times. The rich and precise information embod- ied in text is very useful in a wide range of vision-based ap- plications, therefore text detection and recognition in natu- ral scenes have become important and active research topics in computer vision and document analysis. Especially in re- cent years, the community has seen a surge of research efforts and substantial progresses in these fields, though a variety of challenges (e.g. noise, blur, distortion, occlusion and varia- tion) still remain. The purposes of this survey are three-fold: 1) introduce up-to-date works, 2) identify state-of-the-art al- gorithms, and 3) predict potential research directions in the future. Moreover, this paper provides comprehensive links to publicly available resources, including benchmark datasets, source codes, and online demos. In summary, this literature review can serve as a good reference for researchers in the areas of scene text detection and recognition.展开更多
Patients with hormone receptor(HR)-positive tumors breast cancer usually experience a relatively low pathological complete response(p CR)to neoadjuvant chemotherapy(NAC).Here,we derived a 10-micro RNA risk score(10-mi...Patients with hormone receptor(HR)-positive tumors breast cancer usually experience a relatively low pathological complete response(p CR)to neoadjuvant chemotherapy(NAC).Here,we derived a 10-micro RNA risk score(10-mi RNA RS)-based model with better performance in the prediction of p CR and validated its relation with the disease-free survival(DFS)in 755 HRpositive breast cancer patients(273,265,and 217 in the training,internal,and external validation sets,respectively).This model,presented as a nomogram,included four parameters:the 10-mi RNA RS found in our previous study,progesterone receptor(PR),human epidermal growth factor receptor 2(HER2)status,and volume transfer constant(K).Favorable calibration and discrimination of 10-mi RNA RS-based model with areas under the curve(AUC)of 0.865,0.811,and 0.804 were shown in the training,internal,and external validation sets,respectively.Patients who have higher nomogram score(>92.2)with NAC treatment would have longer DFS(hazard ratio=0.57;95%CI:0.39–0.83;P=0.004).In summary,our data showed the 10-mi RNA RS-based model could precisely identify more patients who can attain p CR to NAC,which may help clinicians formulate the personalized initial treatment strategy and consequently achieves better clinical prognosis for patients with HRpositive breast cancer.展开更多
Lung cancer,which is exacerbated by environmental pollution and tobacco use,has become the most common cause of cancer-related deaths worldwide,with a five-year overall survival rate of only 19%(Siegel et al.,2020;Yan...Lung cancer,which is exacerbated by environmental pollution and tobacco use,has become the most common cause of cancer-related deaths worldwide,with a five-year overall survival rate of only 19%(Siegel et al.,2020;Yang et al.,2020;Yu and Li,2020).Nearly 85%of lung cancers are non-small cell lung cancers,of which lung adenocarcinoma is the most common subtype accounting for 50%of non-small cell lung cancer cases.At present,radiotherapy is the primary therapeutic modality for lung cancer at different stages,with significant prolongation of survival time(Hirsch et al.,2017;Bai et al.,2019;Shi et al.,2020).展开更多
In trees,stem secondary growth depends on vascular cambium proliferation activity and subsequent cell differentiation,in which an auxin concentration gradient across the cambium area plays a crucial role in regulating...In trees,stem secondary growth depends on vascular cambium proliferation activity and subsequent cell differentiation,in which an auxin concentration gradient across the cambium area plays a crucial role in regulating the process.However,the underlying molecular mechanismfor the establishment of auxin concentration is not fully understood.In this study,we identified two function-unknown MADS-box genes,VCM1 and VCM2,which are expressed specifically in the vascular cambium and modulate the subcellular homeostasis of auxin.Simultaneous knockdown of both VCM1 and VCM2 enhanced vascular cambium proliferation activity and subsequent xylem differentiation.Overexpression of VCM1 suppressed vascular cambium activity and wood formation by regulating PIN5 expression,which tuned the soluble auxin concentration in the vascular cambium area.This study reveals the role of VCM1 and VCM2 in regulating the proliferation activity of the vascular cambium and secondary growth by modulating the subcellular auxin homeostasis in Populus.展开更多
Receptor-like kinases(RLKs)play key roles in regulating various physiological aspects in plant growth and development.In Arabidopsis thaliana,there are at least 223 leucine-rich repeat(LRR)RLKs.The functions of the ma...Receptor-like kinases(RLKs)play key roles in regulating various physiological aspects in plant growth and development.In Arabidopsis thaliana,there are at least 223 leucine-rich repeat(LRR)RLKs.The functions of the majority of RLKs in the LRR XI subfamily were previously revealed.Only three RLKs were not characterized.Here we report that two independent triple mutants of these RLKs,named ROOT ELONGATION RECEPTOR KINASES(REKs),exhibit increased cell numbers in the root apical meristem and enhanced cell size in the elongation and maturation zones.The promoter activities of a number of Quiescent Center marker genes are significantly up-regulated in the triple mutant.However,the promoter activities of several marker genes known to control root stem cell niche activities are not altered.RNA-seq analysis revealed that a number of cell wall remodeling genes are significantly up-regulated in the triple mutant.Our results suggest that these REKs play key roles in regulating root development likely via negatively regulating the expression of a number of key cell wall remodeling genes.展开更多
A unique“integrated hard-templating strategy”is described for facile synthesis of a carbonaceous material with a novel three-dimensional(3 D)branched hollow architecture.A set of steps,including template formation,s...A unique“integrated hard-templating strategy”is described for facile synthesis of a carbonaceous material with a novel three-dimensional(3 D)branched hollow architecture.A set of steps,including template formation,surface coating and template removal,all occur in a spontaneous and orderly manner in the one-pot hydrothermal process.Investigations on structural evolution during the process reveal that pre-synthesized zeolitic imidazolate framework-8(ZIF-8)nanoparticles are first dissociated and then self-assembled into 3 D branched superstructures of ZnO as templates.Initial self-assembly is followed by coating of the glucose-derived carbonaceous materials and etching of interior ZnO by organic acids released in situ by hydrolysis of glucose.The 3 D-branched hollow architecture is shown to greatly enhance supercapacitor performance.The research described here provides guidance into the development of strategies for complex hollow carbonaceous architectures for a variety of potential applications.展开更多
基金supported by the Natural Science Foundation of Shanghai the Science and Technology Commission Shanghai Municipality(19ZR1475100)the Equipment Pre-research Fund(61407210207)the Sichuan Science and Technology Program(2021JDRC0015)。
文摘Flexible conductive fibers are essential for wearable electronics and smart electronic textiles.However,in complex operating conditions,conductive fibers will inevitably fracture or damage.Herein,we have developed an elastic conductive self-healable fiber(C-SHF),of which the electrical and mechanical properties can efficiently heal in a wide operating range,including room temperature,underwater,and low temperature.This advantage can be owed to the combination of reversible covalent imine bond and disulfide bond,as well as the instantaneous self-healing ability of liquid metal.The C-SHF,with stretchability,conductivity stability,and universal self-healing properties,can be used as an electrical signal transmission line at high strain and under different operating conditions.Besides,C-SHF was assembled into a double-layer capacitor structure to construct a self-healable sensor,which can effectively respond to pressure as a wearable motion detector.
基金supported by the earmarked fund for China Agriculture Research System (No. CYTX-014)the Agricultural Science and Technology Innovation Program of CAAS+1 种基金the Program of Science and Technology Cooperation with Hong Kong, Macao, and Taiwan, China (No. 2013DFH30050)the special fund for Agro-scientific Research in the Public Interest (No. 201403063)
文摘Interest in mung bean(Vigna radiata L.) as a functional food is growing; however, studies on the nutritional composition of major mung bean cultivars planted in China are limited.Twenty Chinese mung bean cultivars were collected and their nutritional compositions including starch, fat, protein, and phytochemicals were analyzed. The cultivars were found to have a high amount of resistant starch, accounting for 16.1%–22.3% of total starch, and balanced amino acid constitutions. Palmitic acid and linoleic acid were the two dominant fatty acids, accounting for respectively 32.4% and 36.1% of all of the assayed fatty acids. Four bound phenolic acids(syringic, caffeic, p-coumaric, and ferulic acids) and two free phenolic acids(caffeic and ferulic acids) were identified by HPLC. The antioxidant activity of 70%ethanol extracts from the 20 mung bean cultivars was evaluated. Their DPPH and ABTS+free-radical-scavenging capacity ranged from 28.13 ± 2.24 to 35.68 ± 0.71 μmol g-1and from3.82 ± 0.25 to 13.44 ± 1.76 μmol g-1, respectively. Significant positive correlations of ABTS+free-radical-scavenging capacity with total phenolic acids and total flavonoid contents were observed. These results suggest that Chinese mung bean cultivars are rich in balanced nutrients and that their phytochemicals should be considered as potential sources of natural antioxidants.
基金supported by the Program of Science and Technology Cooperation with Hong Kong, Macao, and Taiwan, China (2013DFH30050)the special fund for Agro-scientific Research in the Public Interest (201403063)+1 种基金the earmarked fund for China Agriculture Research System (CYTX-014)Agricultural Science and Technology Innovation Program
文摘The objective of this study was to characterize the phaseolin type and a-amylase(αAI) level in common bean(Phaseolus vidgaris L.) accessions deposited in the Chinese National Genebank.The 40 accessions sampled were common varieties originating in Asia,North America,South America,Europe,and Africa.No Inca(I-) phaseolin was observed in the accessions.Only four accessions contained Tendergreen(T-) phaseolin and the remaining36 contained Sanilac(S-) phaseolin.aAI proteins extracted from nine accessions showed higher a-amylase inhibitory activity than the control(Phase 2,IC_(50) = 0.65 μg).These common bean accessions have potential use as nutraceutical ingredients.
基金supported by the National Natural Science Foundation of China(Grant No.32271827 to Y.Z.and Grant No.32130072 to L.L.)Excellent Youth Foundation of Gansu Scientific Committee(Grant No.22JR5RA394)to Y.Z.the National Key Research and Development Program(2021YFD2200204)to L.L。
文摘Wood is an invaluable asset to human society due to its renewable nature,making it suitable for both sustainable energy production and material manufacturing.Additionally,wood derived from forest trees plays a crucial role in sequestering a significant portion of the carbon dioxide fixed during photosynthesis by terrestrial plants.Nevertheless,with the expansion of the global population and ongoing industrialization,forest coverage has been substantially decreased,resulting in significant challenges for wood production and supply.Wood production practices have changed away from natural forests toward plantation forests.Thus,understanding the underlying genetic mechanisms of wood formation is the foundation for developing high-quality,fast-growing plantation trees.Breeding ideal forest trees for wood production using genetic technologies has attracted the interest of many.Tremendous studies have been carried out in recent years on the molecular,genetic,and cell-biological mechanisms of wood formation,and considerable progress and findings have been achieved.These studies and findings indicate enormous possibilities and prospects for tree improvement.This review will outline and assess the cellular and molecular mechanisms of wood formation,as well as studies on genetically improving forest trees,and address future development prospects.
基金the National Key R&D Program of China(No.2022YFC2104900)the National Natural Science Foundation of China(No.31922073).
文摘N-Acetylneuraminic acid(Neu5Ac),the most common type of Sia,generally acts as the terminal sugar in cell surface glycans,glycoconjugates,oligosaccharides,lipo-oligosaccharides,and polysaccharides,thus exerting numerous physiological functions.The extensive applications of Neu5Ac in the food,cosmetic,and pharmaceutical industries make large-scale production of this chemical desirable.Biosynthesis which is associated with important application potential and environmental friendliness has become an indispensable approach for large-scale synthesis of Neu5Ac.In this review,the physiological roles of Neu5Ac was first summarized in detail.Second,the safety evaluation,regulatory status,and applications of Neu5Ac were discussed.Third,enzyme-catalyzed preparation,whole-cell biocatalysis,and microbial de novo synthesis of Neu5Ac were comprehensively reviewed.In addition,we discussed the main challenges of Neu5Ac de novo biosynthesis,such as screening and engineering of key enzymes,identifying exporters of intermediates and Neu5Ac,and balancing cell growth and biosynthesis.The corresponding strategies and systematic strategies were proposed to overcome these challenges and facilitate Neu5Ac industrial-scale production.
基金Project supported by the National Key Research and Development Program of China (2021YFB3500600,2021YFB3500605)Natural Science Foundation of Jiangsu Province (BK20220365)+5 种基金Key R&D Program of Jiangsu Province (BE2022142)Industry-University-Research Cooperation Project of Jiangsu Province (BY2022514)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (22KJB610002)Jiangsu International Cooperation Project(BZ2021018)Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB375)Nanjing Science and Technology Top Experts Gathering Plan and the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Sulfur dioxide is one of the main causes of air pollution such as acid rain and photochemical smog,and its pollution control and resource utilization become an important research direction of air pollution control,The active component La-Ce-O_(x) is loaded on SiO_(2),γ-Al_(2)O_(3),TiO_(2) and ZrO_(2),and the La-Ce-Ox@ZrO_(2)exhibits the best catalytic activity.By adjusting the loading amount of La-Ce-O_(x),La-Ce-Ox@ZrO_(2) with different mass fractions was prepared.The results show that the activity of 15%La-Ce-Ox@ZrO_(2)catalyst is the best.The SO_(2)conversion is 100%,and the S yield and S selectivity are more than 96% at 350℃.According to the analysis results of H_(2)-TPR,CO_(2)-TPD and NH_(3)-TPD,ZrO_(2) as a support not only reduces the acidity of the catalyst,but also improves the weak alkaline sites of the catalyst,which is conducive to the adsorption and activation of SO2molecules at low temperature.The incorporation of La and Ce increases the oxygen concentration adsorbed on the catalyst.The strong interaction between the support ZrO_(2) and the active component La-Ce-Oxis conducive to the electron transfer between the active component and the support,and improves the activity of the catalyst.For the 15%La-Ce-O_(x)@ZrO_(2),the main reaction intermediates are weakly adsorbed SO_(2)(SO_(3)^(2-)),bicoordinated CO_(3)^(2-),monodentate carbonate and CO in the gas phase.Therefore,the catalytic reaction follows both L-H and E-R mechanisms.
文摘Text, as one of the most influential inventions of humanity, has played an important role in human life, so far from ancient times. The rich and precise information embod- ied in text is very useful in a wide range of vision-based ap- plications, therefore text detection and recognition in natu- ral scenes have become important and active research topics in computer vision and document analysis. Especially in re- cent years, the community has seen a surge of research efforts and substantial progresses in these fields, though a variety of challenges (e.g. noise, blur, distortion, occlusion and varia- tion) still remain. The purposes of this survey are three-fold: 1) introduce up-to-date works, 2) identify state-of-the-art al- gorithms, and 3) predict potential research directions in the future. Moreover, this paper provides comprehensive links to publicly available resources, including benchmark datasets, source codes, and online demos. In summary, this literature review can serve as a good reference for researchers in the areas of scene text detection and recognition.
基金the National Natural Science Foundation of China(92159303,81621004,81720108029,81930081,91940305,81672594,81772836,81872139,82072907,and 82003311)Guangdong Science and Technology Department(2020B1212060018 and 2020B1212030004)+8 种基金Clinical Innovation Research Program of Bioland Laboratory(2018GZR0201004)Bureau of Science and Technology of Guangzhou(20212200003)Program for Guangdong Introducing Innovative and Enterpreneurial Teams(2019BT02Y198)the Project of The Beijing Xisike Clinical Oncology Research Foundation(YRoche2019/2-0078)the Technology Development Program of Guangdong province(2021A0505030082)the Project of The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation(2020B1212060018)Sun Yat-Sen Memorial Hospital Cultivation Project for Clinical Research(SYS-C-201805 and SYS-Q-202004)Guangzhou Science and Technology Program(202102010272)Medical Science and Technology Research Fund of Guangdong Province(A2020391)。
文摘Patients with hormone receptor(HR)-positive tumors breast cancer usually experience a relatively low pathological complete response(p CR)to neoadjuvant chemotherapy(NAC).Here,we derived a 10-micro RNA risk score(10-mi RNA RS)-based model with better performance in the prediction of p CR and validated its relation with the disease-free survival(DFS)in 755 HRpositive breast cancer patients(273,265,and 217 in the training,internal,and external validation sets,respectively).This model,presented as a nomogram,included four parameters:the 10-mi RNA RS found in our previous study,progesterone receptor(PR),human epidermal growth factor receptor 2(HER2)status,and volume transfer constant(K).Favorable calibration and discrimination of 10-mi RNA RS-based model with areas under the curve(AUC)of 0.865,0.811,and 0.804 were shown in the training,internal,and external validation sets,respectively.Patients who have higher nomogram score(>92.2)with NAC treatment would have longer DFS(hazard ratio=0.57;95%CI:0.39–0.83;P=0.004).In summary,our data showed the 10-mi RNA RS-based model could precisely identify more patients who can attain p CR to NAC,which may help clinicians formulate the personalized initial treatment strategy and consequently achieves better clinical prognosis for patients with HRpositive breast cancer.
基金the National Natural Science Foundation of China(Nos.81702244,81871870,and 82073069)the Zhejiang Provincial Natural Science Foundation of China(No.LY21H160008)。
文摘Lung cancer,which is exacerbated by environmental pollution and tobacco use,has become the most common cause of cancer-related deaths worldwide,with a five-year overall survival rate of only 19%(Siegel et al.,2020;Yang et al.,2020;Yu and Li,2020).Nearly 85%of lung cancers are non-small cell lung cancers,of which lung adenocarcinoma is the most common subtype accounting for 50%of non-small cell lung cancer cases.At present,radiotherapy is the primary therapeutic modality for lung cancer at different stages,with significant prolongation of survival time(Hirsch et al.,2017;Bai et al.,2019;Shi et al.,2020).
基金supported by the Ministry of Science and Technology of the People’s Republic of China(2016YFD0600104)the National Natural Science Foundation of China(31630014)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB27020104).
文摘In trees,stem secondary growth depends on vascular cambium proliferation activity and subsequent cell differentiation,in which an auxin concentration gradient across the cambium area plays a crucial role in regulating the process.However,the underlying molecular mechanismfor the establishment of auxin concentration is not fully understood.In this study,we identified two function-unknown MADS-box genes,VCM1 and VCM2,which are expressed specifically in the vascular cambium and modulate the subcellular homeostasis of auxin.Simultaneous knockdown of both VCM1 and VCM2 enhanced vascular cambium proliferation activity and subsequent xylem differentiation.Overexpression of VCM1 suppressed vascular cambium activity and wood formation by regulating PIN5 expression,which tuned the soluble auxin concentration in the vascular cambium area.This study reveals the role of VCM1 and VCM2 in regulating the proliferation activity of the vascular cambium and secondary growth by modulating the subcellular auxin homeostasis in Populus.
基金supported by the National Natural Science Foundation of China(31720103902 and 32030005)the 111 Project from the Department of Science and Technology(B16022)。
文摘Receptor-like kinases(RLKs)play key roles in regulating various physiological aspects in plant growth and development.In Arabidopsis thaliana,there are at least 223 leucine-rich repeat(LRR)RLKs.The functions of the majority of RLKs in the LRR XI subfamily were previously revealed.Only three RLKs were not characterized.Here we report that two independent triple mutants of these RLKs,named ROOT ELONGATION RECEPTOR KINASES(REKs),exhibit increased cell numbers in the root apical meristem and enhanced cell size in the elongation and maturation zones.The promoter activities of a number of Quiescent Center marker genes are significantly up-regulated in the triple mutant.However,the promoter activities of several marker genes known to control root stem cell niche activities are not altered.RNA-seq analysis revealed that a number of cell wall remodeling genes are significantly up-regulated in the triple mutant.Our results suggest that these REKs play key roles in regulating root development likely via negatively regulating the expression of a number of key cell wall remodeling genes.
基金supported by the National Natural Science Foundation of China(21872105,22072107)the Natural Science Foundation of Zhejiang Province(LQ20B030001 and LY20E020002)。
文摘A unique“integrated hard-templating strategy”is described for facile synthesis of a carbonaceous material with a novel three-dimensional(3 D)branched hollow architecture.A set of steps,including template formation,surface coating and template removal,all occur in a spontaneous and orderly manner in the one-pot hydrothermal process.Investigations on structural evolution during the process reveal that pre-synthesized zeolitic imidazolate framework-8(ZIF-8)nanoparticles are first dissociated and then self-assembled into 3 D branched superstructures of ZnO as templates.Initial self-assembly is followed by coating of the glucose-derived carbonaceous materials and etching of interior ZnO by organic acids released in situ by hydrolysis of glucose.The 3 D-branched hollow architecture is shown to greatly enhance supercapacitor performance.The research described here provides guidance into the development of strategies for complex hollow carbonaceous architectures for a variety of potential applications.