Due to obvious advantages,such as light weight,easy folding and deployment and high accuracy of optical imaging,the membrane diffraction large space telescope has currently been one of the hot research topics.Because ...Due to obvious advantages,such as light weight,easy folding and deployment and high accuracy of optical imaging,the membrane diffraction large space telescope has currently been one of the hot research topics.Because of the influence of external disturbance and attitude adjustment,the large space telescope will occur a certain degree of vibration inevitably,affecting the imaging accuracy of the space telescope for Earth.Thus,to satisfy the requirement of imaging accuracy,it is necessary for the space telescope to adopt appropriate vibration control methods.In this paper,the active vibration control of the large space telescope is studied using cables as active actuators.Considering that cables can work under tension but not under pression and the tensile capacity is limited,the unilateral and saturated characteristics of cable actuators are taken into account during control design in this paper.Firstly,the dynamic model of the membrane diffraction space telescope is established using the finite element method(FEM).Secondly,in combination with the linear quadratic regulator(LQR)and the bang-bang regulator,a piecewise cost function is used to design the active vibration control law.Next,the controllability criterion and the genetic algorithm(GA)are adopted to determine the optimal positions of cable actuators.Finally,the validity of the proposed control method is verified by numerical simulations.Simulation results indicate that the vibration of the space telescope can be suppressed effectively using the proposed control method,and the imaging requirements of the telescope may be realized using the least cable actuators,whose minimum quantity and position distribution are determined in this paper.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.12172214 and 12102252)the China Postdoctoral Science Foundation(Grant No.2021M692070)the Industry-University-Research Cooperation Fund of Shanghai Institute of Aerospace System Engineering(Grant No.USCAST2021-12).
文摘Due to obvious advantages,such as light weight,easy folding and deployment and high accuracy of optical imaging,the membrane diffraction large space telescope has currently been one of the hot research topics.Because of the influence of external disturbance and attitude adjustment,the large space telescope will occur a certain degree of vibration inevitably,affecting the imaging accuracy of the space telescope for Earth.Thus,to satisfy the requirement of imaging accuracy,it is necessary for the space telescope to adopt appropriate vibration control methods.In this paper,the active vibration control of the large space telescope is studied using cables as active actuators.Considering that cables can work under tension but not under pression and the tensile capacity is limited,the unilateral and saturated characteristics of cable actuators are taken into account during control design in this paper.Firstly,the dynamic model of the membrane diffraction space telescope is established using the finite element method(FEM).Secondly,in combination with the linear quadratic regulator(LQR)and the bang-bang regulator,a piecewise cost function is used to design the active vibration control law.Next,the controllability criterion and the genetic algorithm(GA)are adopted to determine the optimal positions of cable actuators.Finally,the validity of the proposed control method is verified by numerical simulations.Simulation results indicate that the vibration of the space telescope can be suppressed effectively using the proposed control method,and the imaging requirements of the telescope may be realized using the least cable actuators,whose minimum quantity and position distribution are determined in this paper.