期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Theoretical prediction on thermal and mechanical properties of high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))C by deep learning potential 被引量:13
1
作者 Fu-Zhi Dai Bo Wen +2 位作者 yinjie sun Huimin Xiang Yanchun Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第8期168-174,共7页
High entropy materials(HEMs, e.g. high entropy alloys, high entropy ceramics) have gained increasing interests due to the possibility that they can provide challenge properties unattainable by traditional materials. T... High entropy materials(HEMs, e.g. high entropy alloys, high entropy ceramics) have gained increasing interests due to the possibility that they can provide challenge properties unattainable by traditional materials. Though a large number of HEMs have emerged, there is still in lack of theoretical predictions and simulations on HEMs, which is probably caused by the chemical complexity of HEMs. In this work,we demonstrate that the machine learning potentials developed in recent years can overcome the complexity of HEMs, and serve as powerful theoretical tools to simulate HEMs. A deep learning potential(DLP) for high entropy(Zr(0.2) Hf(0.2) Ti(0.2) Nb(0.2) Ta(0.2))C is fitted with the prediction error in energy and force being 9.4 me V/atom and 217 me V/?, respectively. The reliability and generality of the DLP are affirmed,since it can accurately predict lattice parameters and elastic constants of mono-phase carbides TMC(TM = Ti, Zr, Hf, Nb and Ta). Lattice constants(increase from 4.5707 ? to 4.6727 ?), thermal expansion coefficients(increase from 7.85×10-6 K^(-1) to 10.58×10-6 K^(-1)), phonon thermal conductivities(decrease from 2.02 W·m-1·K^(-1) to 0.95 W·m-1·K^(-1)), and elastic properties of high entropy(Zr(0.2) Hf(0.2) Ti(0.2) Nb(0.2) Ta(0.2))C in temperature ranging from 0°C to 2400°C are predicted by molecular dynamics simulations. The predicted room temperature properties agree well with experimental measurements, indicating the high accuracy of the DLP. With introducing of machine learning potentials, many problems that are intractable by traditional methods can be handled now. It is hopeful that deep insight into HEMs can be obtained in the future by such powerful methods. 展开更多
关键词 High entropy ceramics Machine learning potential Thermal properties Mechanical properties Molecular dynamics Simulation
原文传递
Temperature Dependent Thermal and Elastic Properties of High Entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2):Molecular Dynamics Simulation by Deep Learning Potential 被引量:7
2
作者 Fu-Zhi Dai yinjie sun +2 位作者 Bo Wen Huimin Xiang Yanchun Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第13期8-15,共8页
High entropy diborides are new categories of ultra-high temperature ceramics,which are believed promising candidates for applications in hypersonic vehicles.However,knowledge on high temperature thermal and mechanical... High entropy diborides are new categories of ultra-high temperature ceramics,which are believed promising candidates for applications in hypersonic vehicles.However,knowledge on high temperature thermal and mechanical properties of high entropy diborides is still lacking unit now.In this work,variations of thermal and elastic properties of high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2) with respect to temperature were predicted by molecular dynamics simulations.Firstly,a deep learning potential for Ti-Zr-Hf-Nb-Ta-B diboride system was fitted with its prediction error in energy and force respectively being 9.2 meV/atom and 208 meV/A,in comparison with first-principles calculations.Then,temperature dependent lattice constants,anisotropic thermal expansions,anisotropic phonon thermal conductivities,and elastic properties of high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2) from 0℃to 2400℃were evaluated,where the predicted room temperature values agree well with experimental measurements.In addition,intrinsic lattice distortions of(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2) were analyzed by displacements of atoms from their ideal positions,which are in an order of 10^(-3) A and one order of magnitude smaller than those in(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C.It indicates that lattice distortions in(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2) is not so severe as expected.With the new paradigm of machine learning potential,deep insight into high entropy materials can be achieved in the future,since the chemical and structural complexly in high entropy materials can be well handled by machine learning potential. 展开更多
关键词 High entropy diborides Machine learning potential Thermal properties Elastic properties Molecular dynamics
原文传递
M2M’AlB4(M = Mn, Fe, Co, M’ = Cr, Mo, W): Theoretical predicted ordered MAB phases with Cr3AlB4 crystal structure 被引量:1
3
作者 Fu-Zhi Dai Huimin Xiang +1 位作者 yinjie sun Yanchun Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第7期1432-1438,共7页
The nanolaminated MAB phases have attracted great research interests due to their unusual combination of metal-like and ceramic-like properties, which is similar to MAX phases. Recently, ordered quaternary MAX phases ... The nanolaminated MAB phases have attracted great research interests due to their unusual combination of metal-like and ceramic-like properties, which is similar to MAX phases. Recently, ordered quaternary MAX phases have been discovered, which enriches the family of MAX phases, and opens a new window to tailor the properties of MAX phases and to develop new MXenes. In the present work, we explored possible ordered quaternary MAB phases with Cr3AlB4 structure(space group: Pmmm) by first-principles calculations. The predictions show that M2M’AlB4 phases with M = Mn, Fe, Co and M’ = Cr, Mo, W exhibit strong tendency of ordering, where M locates at 2t site(0.5, 0.5, z2t) and M’ locates at 1 g site(0, 0.5,0.5). The main driving force of ordering may be the differences in bonding strengths between Al and M elements. Analyses on chemical bonds reveal that bonding strengths increase following the order:Al-Mn < Al-Fe < Al-Co, which is consistent with the prediction that ordering tendency increases when M changes from Mn to Co, as derived from enthalpy differences. The ordered M2M’AlB4 phases with M =Mn or Fe are predicted ferromagnetic and ordered M2M’AlB4 phases display lower shear resistance and possibly better ductility in comparison to Cr3AlB4. 展开更多
关键词 MAB phase ORDERED structure FIRST-PRINCIPLE calculations Cr3AlB4 Chemical BONDS Ultrahigh temperature ceramics
原文传递
Segregation of solute atoms in ZrC grain boundaries and their effects on grain boundary strengths
4
作者 Fu-Zhi Dai yinjie sun +2 位作者 Yixiao Ren Huimin Xiang Yanchun Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第6期234-241,共8页
ZrC is a promising candidate for the application in ultra-high temperature regime due to its unique combination of excellent properties,such as high melting point,good chemical inertness and high temperature stability... ZrC is a promising candidate for the application in ultra-high temperature regime due to its unique combination of excellent properties,such as high melting point,good chemical inertness and high temperature stability.The rapid decrease of strength at high temperatures,however,is one of the obstacles that impedes its practical services.Strengthening of grain boundaries by solute segregation is believed to be an effective way to improve its high temperature performance.Therefore,the segregation tendency of ten solid solute atoms,including Sc,Ti,V,Cr,Y,Nb,Mo,Hf,Ta,W,in Zr C grain boundaries,and the strengthening/weakening effects on grain boundaries due to segregation are investigated by first-principles calculations.The segregation tendency is found dominated by the size effect,which is confirmed by both a qualitative analysis and a quantitative approach based on support vector regression.It means that big atoms tend to segregate to grain boundary sites with local expansions,while small atoms tend to segregate to grain boundary sites with local compressions.Simulations on stress-strain responses indicate that segregation of small atoms(Ti,V,Cr,Nb,Ta,Mo,W)can usually improve grain boundary strengths by inducing compression strains to grain boundaries,even though there is also an exception.In contrast,segregation of Sc and Y will soften grain boundaries.The results reveal that strengthening of grain boundaries by solute segregation is a valuable avenue to enhance high temperature mechanical properties of ZrC,providing guidelines for further design of ZrC based materials. 展开更多
关键词 ZRC Grain boundary SEGREGATION STRENGTH First-principles calculation Machine learning
原文传递
Grain boundary segregation induced strong UHTCs at elevated temperatures:A universal mechanism from conventional UHTCs to high entropy UHTCs
5
作者 Fu-Zhi Dai Bo Wen +3 位作者 yinjie sun Yixiao Ren Huimin Xiang Yanchun Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第28期26-33,共8页
Ultra-high temperature ceramics(UHTCs)exhibit a unique combination of excellent properties,including ultra-high melting point,excellent chemical stability,and good oxidation resistance,which make them promising candid... Ultra-high temperature ceramics(UHTCs)exhibit a unique combination of excellent properties,including ultra-high melting point,excellent chemical stability,and good oxidation resistance,which make them promising candidates for aerospace and nuclear applications.However,the degradation of hightemperature strength is one of the main limitations for their ultra-high temperature applications.Thus,searching for mechanisms that can help to develop high-performance UHTCs with good high-temperature mechanical properties is urgently needed.To achieve this goal,grain boundary segregation of a series of carbides,including conventional,medium entropy,and high entropy transition metal carbides,i.e.,Zr_(0.95)W_(0.05)C,TiZrHfC_(3),ZrHfNbTaC_(4),TiZrHfNbTaC_(5),were studied by atomistic simulations with a fitted Deep Potential(DP),and the effects of segregation on grain boundary strength were emphasized.For all the studied carbides,grain boundary segregations are realized,which are dominated by the atomic size effect.In addition,tensile simulations indicate that grain boundaries(GBs)will usually be strengthened due to segregation.Our simulation results reveal that grain boundary segregation may be a universal mechanism in enhancing the high-temperature strength of both conventional UHTCs and medium/high entropy UHTCs,since GBs play a key role in controlling the fracture of UHTCs at elevated temperatures. 展开更多
关键词 UHTCs High entropy ceramics Grain boundary segregation High-temperature strength Machine learning potential
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部