The Xi'an Depression in the Guanzhong Basin of western China has been suggested to contain geothermal resources that could aid China in achieving carbon neutrality and optimizing energy structure.However,the high ...The Xi'an Depression in the Guanzhong Basin of western China has been suggested to contain geothermal resources that could aid China in achieving carbon neutrality and optimizing energy structure.However,the high concentration of total dissolved solids(TDS)and scale-forming ions in geothermal water from the depression causes severe scaling problems in harvesting geothermal energy.To reduce scale-related problems,accurate identification of scale types and prediction of scaling during geothermal energy utilization are crucial.This study starts with identifying the types and trends of scaling in the study area,using index-based discriminant methods and hydrogeochemical simulation to calculate and analyze the mineral saturation index of water samples from some wellheads and of reconstructed fluid samples of geothermal reservoirs.The results indicate that the scales are mostly calcium carbonate scales rather than sulfate scales as a result of temperature changes.Several portions of the geothermal water systems are found to have distinct mineral scaling components.Quartz and chalcedony are formed in low temperature areas,while carbonate minerals are in high temperature areas.Despite the low iron content of geothermal water samples from the study area,scaling is very common due to scaling-prone iron minerals.The findings can be used to evaluate geothermal drainage systems and guide anti-scaling during geothermal energy utilization in similar settings.展开更多
To evaluate the applicability of the Standardized Precipitation-Evapotranspiration Index (SPEI) and the self-calibrated Palmer Drought Severity Index (scPDSI) to paleoclimate reconstructions in the east Asian summ...To evaluate the applicability of the Standardized Precipitation-Evapotranspiration Index (SPEI) and the self-calibrated Palmer Drought Severity Index (scPDSI) to paleoclimate reconstructions in the east Asian summer monsoon region, we used a 194-year tree-ring width chronology from Guancen Mountain, Shanxi Province, China, to investigate its correlation with SPEI and scPDSI, respectively. The results indicated scPDSI as a robust drought index that could be reconstructed from tree-ring width on Guancen Mountain other hydroclimate-related Significant correlations with series illustrated that our reconstruction captured common variations of hydroclimate in the surrounding areas. Additionally, our reconstruction showed significant correlation with nearby grid points of the Monsoon Asia Drought Atlas (MADA). However, while unprecedented drying trend existed during the past several decades in MADA, it was not represented in our reconstruction or in instrumental scPDSI/Dai-PDSI. This may imply that MADA overestimated drought severity during the past several decades in our study area; this overestimation was probably caused by an insufficient spatiotemporal distribution of the tree-ring network used by MADA. Therefore, more drought reconstructions based on individual sampling sites in eastern Asia are necessary to gain a thorough understanding of the Asian Monsoon climate variability.展开更多
基金supported by the Research Project on Middle and Deep Geothermal Energy Utilization in Guanzhong Area of Shaanxi ProvincedSpecial Study on Sandstone Thermal Storage Recharge(No.21152920349)the Special Fund for Basic Scientific Research Operating Expenses of Central Universities of Chang'an University(Grant No.300102292903)+1 种基金the Basic Research Plan of Natural Sciences of Shaanxi Province General Project“Study on Loess Landslide Chronology Based on OSL Dating Technology”(Grant No.2017JM4018)the Open Fund of State Key Laboratory of Loess and Quaternary Geology(Grant No.SKLLQG1933).
文摘The Xi'an Depression in the Guanzhong Basin of western China has been suggested to contain geothermal resources that could aid China in achieving carbon neutrality and optimizing energy structure.However,the high concentration of total dissolved solids(TDS)and scale-forming ions in geothermal water from the depression causes severe scaling problems in harvesting geothermal energy.To reduce scale-related problems,accurate identification of scale types and prediction of scaling during geothermal energy utilization are crucial.This study starts with identifying the types and trends of scaling in the study area,using index-based discriminant methods and hydrogeochemical simulation to calculate and analyze the mineral saturation index of water samples from some wellheads and of reconstructed fluid samples of geothermal reservoirs.The results indicate that the scales are mostly calcium carbonate scales rather than sulfate scales as a result of temperature changes.Several portions of the geothermal water systems are found to have distinct mineral scaling components.Quartz and chalcedony are formed in low temperature areas,while carbonate minerals are in high temperature areas.Despite the low iron content of geothermal water samples from the study area,scaling is very common due to scaling-prone iron minerals.The findings can be used to evaluate geothermal drainage systems and guide anti-scaling during geothermal energy utilization in similar settings.
基金supported by the National Natural Science Foundation of China(41201046,40890051),KZZDEW-04-01the State Key Laboratory of Loess and Quaternary Geology(SKLLQG),and the West Doctoral Foundation of Chinese Academy of Sciences.This is a SISTRR contribution(No.29)
文摘To evaluate the applicability of the Standardized Precipitation-Evapotranspiration Index (SPEI) and the self-calibrated Palmer Drought Severity Index (scPDSI) to paleoclimate reconstructions in the east Asian summer monsoon region, we used a 194-year tree-ring width chronology from Guancen Mountain, Shanxi Province, China, to investigate its correlation with SPEI and scPDSI, respectively. The results indicated scPDSI as a robust drought index that could be reconstructed from tree-ring width on Guancen Mountain other hydroclimate-related Significant correlations with series illustrated that our reconstruction captured common variations of hydroclimate in the surrounding areas. Additionally, our reconstruction showed significant correlation with nearby grid points of the Monsoon Asia Drought Atlas (MADA). However, while unprecedented drying trend existed during the past several decades in MADA, it was not represented in our reconstruction or in instrumental scPDSI/Dai-PDSI. This may imply that MADA overestimated drought severity during the past several decades in our study area; this overestimation was probably caused by an insufficient spatiotemporal distribution of the tree-ring network used by MADA. Therefore, more drought reconstructions based on individual sampling sites in eastern Asia are necessary to gain a thorough understanding of the Asian Monsoon climate variability.