期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
双金属源制备具有有序阳离子空位的非层状二维金属硫化物 被引量:1
1
作者 谭隽阳 张宗腾 +16 位作者 曾圣锋 李晟楠 王经纬 郑荣戌 侯福臣 魏印平 孙宇杰 张荣杰 赵仕龙 农慧雨 陈文骏 干林 邹小龙 赵悦 林君浩 刘碧录 成会明 《Science Bulletin》 SCIE EI CAS CSCD 2022年第16期1649-1658,M0004,共11页
二维(2D)过渡金属硫族化合物(TMC)在纳米电子学和能源等领域中有广泛的应用前景.其中,非层状TMC由于表面不饱和悬挂键以及强大的层内和层间化学键使其2D生长极具挑战,限制了极限厚度下的物性探究.本文提出了一种普适的双金属源生长方法... 二维(2D)过渡金属硫族化合物(TMC)在纳米电子学和能源等领域中有广泛的应用前景.其中,非层状TMC由于表面不饱和悬挂键以及强大的层内和层间化学键使其2D生长极具挑战,限制了极限厚度下的物性探究.本文提出了一种普适的双金属源生长方法,利用金属及其氯化物的混合物作为金属前驱体,实现了非层状2D TMC的可控生长.以六方Fe_(1-x)S为例,Fe_(1-x)S纳米片的厚度薄至3 nm,横向尺寸超过100μm.与MoS_(2)这类层状TMC(阴离子空位占主导)不同的是,本研究在Fe_(1-x)S中发现了有序阳离子Fe空位.低温输运测试和理论计算结果表明,2D Fe_(1-x)S是一种稳定的窄带隙半导体,其带隙宽度约为60 meV.除Fe_(1-x)S外,该方法还可用于生长其他多种具有有序阳离子空位的非层状2D TMC,包括Fe_(1-x)Se,Co_(1-x)S,Cr_(1-x)S和V_(1-x)S.本工作为非层状材料在2D厚度极限下的生长和物性表征铺平了道路. 展开更多
关键词 纳米电子学 双金属 非层状材料 可控生长 悬挂键 过渡金属硫族化合物 金属硫化物 横向尺寸
原文传递
Engineering nanoporous and solid core-shell architectures of lowplatinum alloy catalysts for high power density PEM fuel cells
2
作者 Yongqiang Kang Jiaqi Wang +3 位作者 yinping wei Yongle Wu Dongsheng Xia Lin Gan 《Nano Research》 SCIE EI CSCD 2022年第7期6148-6155,共8页
Low-platinum(Pt)alloy catalysts hold promising application in oxygen reduction reaction(ORR)electrocatalysis of protonexchange-membrane fuel cells(PEMFCs).Although significant progress has been made to boost the kinet... Low-platinum(Pt)alloy catalysts hold promising application in oxygen reduction reaction(ORR)electrocatalysis of protonexchange-membrane fuel cells(PEMFCs).Although significant progress has been made to boost the kinetic ORR mass activity at low current densities in liquid half-cells,little attention was paid to the performance of Pt-based catalysts in realistic PEMFCs particularly at high current densities for high power density,which remains poorly understood.In this paper,we show that,regardless of the kinetic mass activity at the low current density region,the high current density performance of the low-Pt alloy catalysts is dominantly controlled by the total Pt surface area,particularly in low-Pt-loading H_(2)–air PEMFCs.To this end,we propose two different strategies to boost the specific Pt surface area,the post-15-nm dealloyed nanoporous architecture and the sub-5-nm solid core–shell nanoparticles(NPs)through fluidic-bed synthesis,both of which bring in comparably high mass activity and high Pt surface area for large-current-density performance.At medium current density,the dealloyed porous NPs provide substantially higher H_(2)–air PEMFC performance compared to solid core–shell catalysts,despite their similar mass activity in liquid half-cells.Scanning transmission electron microscopy images combined with electron energy loss spectroscopic imaging evidence a previously unreported“semi-immersed nanoporous-Pt/ionomer”structure in contrast to a“fully-immersed core–shellPt/ionomer”structure,thus favoring O_(2) transport and improving the fuel cell performance.Our results provide new insights into the role of Pt nanostructures in concurrently optimizing the mass activity,Pt surface area and Pt/Nafion interface for high power density fuel cells. 展开更多
关键词 low-platinum alloy catalyst NANOPOROSITY proton-exchange-membrane fuel cells power density triple-phase boundary
原文传递
Grain boundaries contribute to highly efficient lithium-ion transport in advanced LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)secondary sphere with compact structure
3
作者 Cheng Liu Heyi Xia +4 位作者 yinping wei Jiabin Ma Lin Gan Feiyu Kang Yan-Bing He 《SusMat》 2021年第2期255-265,共11页
LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA)secondary particles with high tap density have a great potential for high volumetric energy density lithium(Li)-ion power bat-tery.However,the ionic conductivity mechanism of NCA ... LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA)secondary particles with high tap density have a great potential for high volumetric energy density lithium(Li)-ion power bat-tery.However,the ionic conductivity mechanism of NCA with compact structure is still a suspense,especially the function of grain boundaries.Herein,we sys-tematically investigate the Li-ion transport behavior in both the primitive NCA(PNCA)secondary sphere densely grown by single-crystal primary grains and ball-milled NCA(MNCA)nanosized particle to reveal the role of grain bound-aries for Li-ion transport.The PNCA and MNCA have comparable Li-ion dif-fusion coefficients and rate performance.Moreover,the graphene nanosheet conductive additive only mildly affects the Li-ion diffusion in PNCA cathode,while which severely blocks the Li-ion transport in MNCA cathode.Through high-resolution transmission electron microscopy and electron energy loss spec-troscopy,we clearly observe Li-ion depletion at lower state of charge(SOC)and Li-ion aggregation at high SOC along the grain boundaries of PNCA secondary particles during high-rate lithiation process.The grain boundaries can construct an interconnected Li-ion transport network for highly efficient Li-ion transport,which contributes to excellent high-rate performance of compact PNCA sec-ondary particles.These findings present new strategy and deep insight in design-ing compact materials with excellent high-rate performance. 展开更多
关键词 compact structure grain boundaries graphene nanosheet LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2) lithium-ion transport
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部