Land surface actual evapotranspiration is an important process that influences the Earth's energy and water cycles and determines the water and heat transfer in the soil-vegetation-atmosphere system.Meanwhile,the ...Land surface actual evapotranspiration is an important process that influences the Earth's energy and water cycles and determines the water and heat transfer in the soil-vegetation-atmosphere system.Meanwhile,the cryosphere's hydrological process is receiving extensive attention,and its water problem needs to be understood from multiple perspectives.As the main part of the Chinese cryosphere,the Tibetan Plateau faces significant climate and environmental change.There are active interaction and pronounced feedback between the environment and ETa in the cryosphere.This article mainly focuses on the research progress of ETa in the Tibetan Plateau.It first reviews the ETa process,characteristics,and impact factors of typical underlying surfaces in the Tibetan Plateau(alpine meadows,alpine steppes,alpine wetlands,alpine forests,lakes).Then it compares the temporal and spatial variations of ETa at different scales.In addition,considering the current greening of cryosphere vegetation due to climate change,it discusses the relationship between vegetation greening and transpiration to help clarify how vegetation activities are related to the regional water cycle and surface energy budget.展开更多
Robust climate warming has led to significant expansion of lakes in the central Tibetan Plateau. Using remote sensing data, our quantitative analysis indicates that Siling Co, a saline lake in a characteristic endorhe...Robust climate warming has led to significant expansion of lakes in the central Tibetan Plateau. Using remote sensing data, our quantitative analysis indicates that Siling Co, a saline lake in a characteristic endorheic basin in the central region of the Plateau, has expanded more than 600 km2 in area since 1976. Particularly since 1995, the lake has signif- icantly expanded in response to increasing precipitation, decreasing water surface evaporation caused by weaker winds and less solar radiation, and increased glacier meltwater draining to the lake. Glacie^lake interactions are important in governing lake expansion and are also part of a feedback loop that influences the local climate. Worsening climatic conditions (decreased precipitation and increased temperatures) that could have caused the lake to shrink during 1976-1994 were offset by increasing glacier meltwater feeding the lake, which made the lake nearly stable. We demonstrate that this pattern changed during 1995-2009, when glacier meltwater actually decreased but participation runoff increased and evaporation decreased, leading to expansion of the lake. If climatic conditions became suitable for further lake development, which would be indicated by expansion in lake area, glacier meltwater could be saved in a stable reservoir.展开更多
Two decades have passed since China and Japan jointly launched hydrological & climatological observations on the glaciers in Tanggula Pass, Tibetan Plateau. Although the research institutions involved have been eithe...Two decades have passed since China and Japan jointly launched hydrological & climatological observations on the glaciers in Tanggula Pass, Tibetan Plateau. Although the research institutions involved have been either restructured or renamed, their work, between 1989 and 1993, was ground-breaking and remains significant even to this day. Some observation sites established at that time are still utilized for large-scaled projects sponsored by GAME/Tibet, NSFC (Natural Science Foundation of China) and the Major State Basic Research Development Program of China (973 Program). Recently, a glacier monitoring system has been established on the cap of Dongkemadi Glacier, and is expected to make further contributions to research on the change of the cryospheric and climatic environment in the area.展开更多
In conjunction with global climate change, soil temperatures have been recorded to be increasing more rapidly than air temperatures at Mt. Gongga, China. Plant density is also increasing, and a means of combining the ...In conjunction with global climate change, soil temperatures have been recorded to be increasing more rapidly than air temperatures at Mt. Gongga, China. Plant density is also increasing, and a means of combining the effects of changes in soil temperature and competition on the growth and regeneration of the constructive coniferous species seedlings in the subalpine ecotones is needed. Thus, a split-plot design experiment was conducted with Sargent spruce (Picea brachytyla) and Purple cone spruce (P. purpurea) saplings, using four soil temperatures (control T<sub>soil</sub> = 11.9℃ ± 0.3℃, low T<sub>soil</sub> = 13.4℃ ± 0.140℃, intermediate T<sub>soil</sub> = 15.4℃ ± 0.1℃, high T<sub>soil</sub> = 16.4℃ ± 0.2℃) and three plant densities (one, two and three saplings per pot), in the subalpine ecotone. Soil temperatures were controlled through a cable heating system. After two growing seasons under the soil temperature treatments, 107 Sargent spruce saplings and 110 of the same-aged Purple cone spruce saplings were harvested. The results showed that Sargent spruce grew faster and with a greater biomass productivity than Purple cone spruce. Increased soil temperature significantly increased leaf biomass, branch biomass, above-ground biomass, and total plant biomass for developing crown architecture in Sargent spruce, whereas plant competition (i.e., higher density) notably caused a decline in leaf biomass, branch biomass, and above-ground biomass. Purple cone spruce did not respond to either an increases in soil temperature or plant competition. Neither plant species was influenced by the interaction of soil temperature and plant competition. These results suggest that Sargent spruce may expand the upper and lower limits of its distribution as global warming continues, but the expansion is likely to be restricted by plant competition in the future, including that from Purple cone spruce. Below-ground, fine root biomass does not change with soil warming although other sized roots do in both species. This signifies that light availability is more important in the acclimation of Sargent spruce to the changing environments than soil nutrient availability. Purple cone spruce is unaffected by the complex changing environment, suggesting that this spruce may stably grow and continue to thrive in the subalpine ecotone in future scenarios of climate change.展开更多
Atmospheric air temperature data from 92 stations in China's radiosonde network were used to analyze changes in the freezing level height (FLH), glacier snow line, and ice edge from 1958-2005 (48 years) and to ex...Atmospheric air temperature data from 92 stations in China's radiosonde network were used to analyze changes in the freezing level height (FLH), glacier snow line, and ice edge from 1958-2005 (48 years) and to examine the impact of these changes on the cryosphere. In general, the FLH, glacier snow line, and ice edge exhibited latitudinal zonation, declining from south to north. Trends in the FLH, glacier snow line, and ice edge showed spatial heterogeneity during the study period, with prevailing upward trends. Temporally, the FLH, glacier snow line, and ice edge trends differed on various time scales.展开更多
Prof.Xie Zichu passed away on January 25,2020 in Changsha,Hunan Province,China at the age of 83 years old.Being one of the internationally renowned and highly respected glaciologists of China,this issue is dedicated w...Prof.Xie Zichu passed away on January 25,2020 in Changsha,Hunan Province,China at the age of 83 years old.Being one of the internationally renowned and highly respected glaciologists of China,this issue is dedicated with all respect in memory of him for his life-long effort and contribution to advance studies on glaciology in China.He has undertaken field investigations on glacier mass balance.展开更多
We focus on a type of combined signals whose forms remain invariant under the autoregressive operators. To extract the true signal from the autoregressive noise, we develop a strategy to separate parameters and use a ...We focus on a type of combined signals whose forms remain invariant under the autoregressive operators. To extract the true signal from the autoregressive noise, we develop a strategy to separate parameters and use a two-step least squares approach to estimate the autoregressive parameters directly and then further give the estimate of the signal parameters. This method overcomes the difficulty that the autoregressive noise remains unknown in other methods. It can effectively separate the noise and extract the true signal. The algorithm is linear. The solution of the problem is computationally cheap and practical with high accuracy.展开更多
The Tibetan Plateau(TP)and its surroundings are also referred to as“Asian Water Tower”,which is the headwater of ten major rivers in Asia and provides ecosystem service for nearly two billion people[1].The interior ...The Tibetan Plateau(TP)and its surroundings are also referred to as“Asian Water Tower”,which is the headwater of ten major rivers in Asia and provides ecosystem service for nearly two billion people[1].The interior TP boasts the greatest concentration of high-latitude inland lakes in the world,providing essential water resources,regulating regional climate and maintaining ecological balance.Over the past 50 years,the TP has experienced rapid climate warming and overall wetting,which has led to glacier mass loss,thawing of permafrost,reduction in snow cover,and shortening of lake ice duration[1].Changes in lake water storage provide a means of assessing the regional hydrological response to recent climate change in this sparsely populated region.展开更多
The Serling Co region is located at the transitional zone of the interaction between the Indian monsoon and the westerlies over the Tibetan Plateau. The Serling Co lake covers a water area of2,389 km2(June 2017) in a ...The Serling Co region is located at the transitional zone of the interaction between the Indian monsoon and the westerlies over the Tibetan Plateau. The Serling Co lake covers a water area of2,389 km2(June 2017) in a 45,530 km2drainage basin. Under the dramatic hydro-meteorological changes on the Tibetan Plateau in recent decades, and complex hydrological compositions of rivers and lakes in the basin, the lake area expanded by 43%, from1,667 km2in 1976, to 2,389 km2in 2017 (1)In 2014 it surpassed Nam Co as the largest lake on the Tibetan Plateau [2], and exerts significant effect on regional environmental conditions.展开更多
Terrestrial evapotranspiration(ET)is a crucial link between Earth’s water cycle and the surface energy budget.Accurate measurement and estimation remain a major challenge in geophysical,biological,and environmental s...Terrestrial evapotranspiration(ET)is a crucial link between Earth’s water cycle and the surface energy budget.Accurate measurement and estimation remain a major challenge in geophysical,biological,and environmental studies.Pioneering work,represented by Dalton and Penman,and the development of theories and experiments on turbulent exchange in the atmospheric boundary layer(ABL),laid the foundation for mainstream methodologies in ET estimation.Since the 1990s,eddy covariance(EC)systems and satellite remote sensing have been widely applied from cold to tropical and from arid to humid regions.They cover water surfaces,wetlands,forests,croplands,grasslands,barelands,and urban areas,offering an exceptional number of reports on diverse ET processes.Surface nocturnal ET,hysteresis between ET and environmental forces,turbulence intermittency,island effects on heterogeneous surfaces,and phase transition between underlying surfaces are examples of reported new phenomena,posing theoretical and practical challenges to mainstream ET methodologies.Additionally,based on non-conventional theories,new methods have emerged,such as maximum entropy production and nonparametric approaches.Furthermore,high-frequency on-site observation and aerospace remote sensing technology in combination form multi-scale observations across plant stomata,leaves,plants,canopies,landscapes,and basins.This promotes an insightful understanding of diverse ET processes and synthesizes the common mechanisms of the processes between and across spatial and temporal scales.All the recent achievements in conception,model,and technology serve as the basis for breaking through the known difficulties in ET estimation.We expect that they will provide a rigorous,reliable scientific basis and experimental support to address theoretical arguments of global significance,such as the water-heat-carbon cycle,and solve practical needs of national importance,including agricultural irrigation and food security,precise management of water resources and eco-environmental protection,and regulation of the urban thermal environment and climate change adaptation.展开更多
基金This research was jointly funded by the"Strategic Priority Research Program"of the Chinese Academy of Sciences(XDA2006020102)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0201)+1 种基金National Natural Science Foundation of China(41801047,41701082),the China Postdoctoral Science Foundation funded project(2018M631589)the Open Research Fund Program of State Key Laboratory of Cryospheric Science,Northwest Institute of Eco-Environment and Resources,CAS(SKLCS-OP-2020-11).
文摘Land surface actual evapotranspiration is an important process that influences the Earth's energy and water cycles and determines the water and heat transfer in the soil-vegetation-atmosphere system.Meanwhile,the cryosphere's hydrological process is receiving extensive attention,and its water problem needs to be understood from multiple perspectives.As the main part of the Chinese cryosphere,the Tibetan Plateau faces significant climate and environmental change.There are active interaction and pronounced feedback between the environment and ETa in the cryosphere.This article mainly focuses on the research progress of ETa in the Tibetan Plateau.It first reviews the ETa process,characteristics,and impact factors of typical underlying surfaces in the Tibetan Plateau(alpine meadows,alpine steppes,alpine wetlands,alpine forests,lakes).Then it compares the temporal and spatial variations of ETa at different scales.In addition,considering the current greening of cryosphere vegetation due to climate change,it discusses the relationship between vegetation greening and transpiration to help clarify how vegetation activities are related to the regional water cycle and surface energy budget.
基金funded by the Major State Basic Research Development Program of China (973 Program) under Grant No. 2010CB951701by the Natural Science Foundation of China (No. 41071042)supported by the Innovation Project of Chinese Academy of Sciences (KZCX2-YW-BR-22)
文摘Robust climate warming has led to significant expansion of lakes in the central Tibetan Plateau. Using remote sensing data, our quantitative analysis indicates that Siling Co, a saline lake in a characteristic endorheic basin in the central region of the Plateau, has expanded more than 600 km2 in area since 1976. Particularly since 1995, the lake has signif- icantly expanded in response to increasing precipitation, decreasing water surface evaporation caused by weaker winds and less solar radiation, and increased glacier meltwater draining to the lake. Glacie^lake interactions are important in governing lake expansion and are also part of a feedback loop that influences the local climate. Worsening climatic conditions (decreased precipitation and increased temperatures) that could have caused the lake to shrink during 1976-1994 were offset by increasing glacier meltwater feeding the lake, which made the lake nearly stable. We demonstrate that this pattern changed during 1995-2009, when glacier meltwater actually decreased but participation runoff increased and evaporation decreased, leading to expansion of the lake. If climatic conditions became suitable for further lake development, which would be indicated by expansion in lake area, glacier meltwater could be saved in a stable reservoir.
基金funded by the Major State Basic Research Development Program of China (973 Program) under Grant No.2010CB951701the Natural ScienceFoundation of China (No.41071042)supported by the Innovation Project of Chinese Academy of Sciences(KZCX2-YW-BR-22)
文摘Two decades have passed since China and Japan jointly launched hydrological & climatological observations on the glaciers in Tanggula Pass, Tibetan Plateau. Although the research institutions involved have been either restructured or renamed, their work, between 1989 and 1993, was ground-breaking and remains significant even to this day. Some observation sites established at that time are still utilized for large-scaled projects sponsored by GAME/Tibet, NSFC (Natural Science Foundation of China) and the Major State Basic Research Development Program of China (973 Program). Recently, a glacier monitoring system has been established on the cap of Dongkemadi Glacier, and is expected to make further contributions to research on the change of the cryospheric and climatic environment in the area.
文摘In conjunction with global climate change, soil temperatures have been recorded to be increasing more rapidly than air temperatures at Mt. Gongga, China. Plant density is also increasing, and a means of combining the effects of changes in soil temperature and competition on the growth and regeneration of the constructive coniferous species seedlings in the subalpine ecotones is needed. Thus, a split-plot design experiment was conducted with Sargent spruce (Picea brachytyla) and Purple cone spruce (P. purpurea) saplings, using four soil temperatures (control T<sub>soil</sub> = 11.9℃ ± 0.3℃, low T<sub>soil</sub> = 13.4℃ ± 0.140℃, intermediate T<sub>soil</sub> = 15.4℃ ± 0.1℃, high T<sub>soil</sub> = 16.4℃ ± 0.2℃) and three plant densities (one, two and three saplings per pot), in the subalpine ecotone. Soil temperatures were controlled through a cable heating system. After two growing seasons under the soil temperature treatments, 107 Sargent spruce saplings and 110 of the same-aged Purple cone spruce saplings were harvested. The results showed that Sargent spruce grew faster and with a greater biomass productivity than Purple cone spruce. Increased soil temperature significantly increased leaf biomass, branch biomass, above-ground biomass, and total plant biomass for developing crown architecture in Sargent spruce, whereas plant competition (i.e., higher density) notably caused a decline in leaf biomass, branch biomass, and above-ground biomass. Purple cone spruce did not respond to either an increases in soil temperature or plant competition. Neither plant species was influenced by the interaction of soil temperature and plant competition. These results suggest that Sargent spruce may expand the upper and lower limits of its distribution as global warming continues, but the expansion is likely to be restricted by plant competition in the future, including that from Purple cone spruce. Below-ground, fine root biomass does not change with soil warming although other sized roots do in both species. This signifies that light availability is more important in the acclimation of Sargent spruce to the changing environments than soil nutrient availability. Purple cone spruce is unaffected by the complex changing environment, suggesting that this spruce may stably grow and continue to thrive in the subalpine ecotone in future scenarios of climate change.
基金funded by the Major State Basic Research Development Program of China (973 Program) under Grant No. 2010CB951701 and No. 2010CB428606the Natural Science Foundation of China (No. 41071042 and No. 40775045)+1 种基金supported by the Innovation Project of the Chinese Academy of Sciences (KZCX2-YW-BR-22)special finance support from the China Meteorological Administration (GYHY200906017)
文摘Atmospheric air temperature data from 92 stations in China's radiosonde network were used to analyze changes in the freezing level height (FLH), glacier snow line, and ice edge from 1958-2005 (48 years) and to examine the impact of these changes on the cryosphere. In general, the FLH, glacier snow line, and ice edge exhibited latitudinal zonation, declining from south to north. Trends in the FLH, glacier snow line, and ice edge showed spatial heterogeneity during the study period, with prevailing upward trends. Temporally, the FLH, glacier snow line, and ice edge trends differed on various time scales.
文摘Prof.Xie Zichu passed away on January 25,2020 in Changsha,Hunan Province,China at the age of 83 years old.Being one of the internationally renowned and highly respected glaciologists of China,this issue is dedicated with all respect in memory of him for his life-long effort and contribution to advance studies on glaciology in China.He has undertaken field investigations on glacier mass balance.
文摘We focus on a type of combined signals whose forms remain invariant under the autoregressive operators. To extract the true signal from the autoregressive noise, we develop a strategy to separate parameters and use a two-step least squares approach to estimate the autoregressive parameters directly and then further give the estimate of the signal parameters. This method overcomes the difficulty that the autoregressive noise remains unknown in other methods. It can effectively separate the noise and extract the true signal. The algorithm is linear. The solution of the problem is computationally cheap and practical with high accuracy.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0201)National Natural Science Foundation of China(41988101,41971097,and U2202208)。
文摘The Tibetan Plateau(TP)and its surroundings are also referred to as“Asian Water Tower”,which is the headwater of ten major rivers in Asia and provides ecosystem service for nearly two billion people[1].The interior TP boasts the greatest concentration of high-latitude inland lakes in the world,providing essential water resources,regulating regional climate and maintaining ecological balance.Over the past 50 years,the TP has experienced rapid climate warming and overall wetting,which has led to glacier mass loss,thawing of permafrost,reduction in snow cover,and shortening of lake ice duration[1].Changes in lake water storage provide a means of assessing the regional hydrological response to recent climate change in this sparsely populated region.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20020100)the Key Project of National Natural Science Foundation of China (41831177)+1 种基金China Ministry of Science and Technology Project (2018YFB05050000)the 13th Five-year Informatization Plan of Chinese Academy of Sciences (XXH13505-06)
文摘The Serling Co region is located at the transitional zone of the interaction between the Indian monsoon and the westerlies over the Tibetan Plateau. The Serling Co lake covers a water area of2,389 km2(June 2017) in a 45,530 km2drainage basin. Under the dramatic hydro-meteorological changes on the Tibetan Plateau in recent decades, and complex hydrological compositions of rivers and lakes in the basin, the lake area expanded by 43%, from1,667 km2in 1976, to 2,389 km2in 2017 (1)In 2014 it surpassed Nam Co as the largest lake on the Tibetan Plateau [2], and exerts significant effect on regional environmental conditions.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51879255,41430855).
文摘Terrestrial evapotranspiration(ET)is a crucial link between Earth’s water cycle and the surface energy budget.Accurate measurement and estimation remain a major challenge in geophysical,biological,and environmental studies.Pioneering work,represented by Dalton and Penman,and the development of theories and experiments on turbulent exchange in the atmospheric boundary layer(ABL),laid the foundation for mainstream methodologies in ET estimation.Since the 1990s,eddy covariance(EC)systems and satellite remote sensing have been widely applied from cold to tropical and from arid to humid regions.They cover water surfaces,wetlands,forests,croplands,grasslands,barelands,and urban areas,offering an exceptional number of reports on diverse ET processes.Surface nocturnal ET,hysteresis between ET and environmental forces,turbulence intermittency,island effects on heterogeneous surfaces,and phase transition between underlying surfaces are examples of reported new phenomena,posing theoretical and practical challenges to mainstream ET methodologies.Additionally,based on non-conventional theories,new methods have emerged,such as maximum entropy production and nonparametric approaches.Furthermore,high-frequency on-site observation and aerospace remote sensing technology in combination form multi-scale observations across plant stomata,leaves,plants,canopies,landscapes,and basins.This promotes an insightful understanding of diverse ET processes and synthesizes the common mechanisms of the processes between and across spatial and temporal scales.All the recent achievements in conception,model,and technology serve as the basis for breaking through the known difficulties in ET estimation.We expect that they will provide a rigorous,reliable scientific basis and experimental support to address theoretical arguments of global significance,such as the water-heat-carbon cycle,and solve practical needs of national importance,including agricultural irrigation and food security,precise management of water resources and eco-environmental protection,and regulation of the urban thermal environment and climate change adaptation.