期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Redesigning transcription factor Cre1 for alleviating carbon catabolite repression in Trichoderma reesei 被引量:1
1
作者 Lijuan Han Kuimei Liu +6 位作者 Wei Ma Yi Jiang Shaoli Hou yinshuang tan Quanquan Yuan Kangle Niu Xu Fang 《Synthetic and Systems Biotechnology》 SCIE 2020年第3期230-235,共6页
Carbon catabolite repression(CCR),which is mainly mediated by Cre1 and triggered by glucose,leads to a decrease in cellulase production in Trichoderma reesei.Many studies have focused on modifying Cre1 for alleviating... Carbon catabolite repression(CCR),which is mainly mediated by Cre1 and triggered by glucose,leads to a decrease in cellulase production in Trichoderma reesei.Many studies have focused on modifying Cre1 for alleviating CCR.Based on the homologous alignment of CreA from wild-type Penicillium oxalicum 114–2(Po-0)and cellulase hyperproducer JUA10-1(Po-1),we constructed a C-terminus substitution strain—Po-2—with decreased transcriptional levels of cellulase and enhanced CCR.Results revealed that the C-terminal domain of CreAPo−1 plays an important role in alleviating CCR.Furthermore,we replaced the C-terminus of Cre1 with that of CreAPo−1 in T.reesei(Tr-0)and generated Tr-1.As a control,the C-terminus of Cre1 was truncated and Tr-2 was generated.The transcriptional profiles of these transformants revealed that the C-terminal chimera greatly improves cellulase transcription in the presence of glucose and thus upregulates cellulase in the presence of glucose and weakens CCR,consistent with truncating the C-terminus of Cre1 in Tr-0.Therefore,we propose constructing a C-terminal chimera as a new strategy to improve cellulase production and alleviate CCR in the presence of glucose. 展开更多
关键词 Carbon catabolite repression CHIMERA Cre1 cel7a Trichoderma reesei
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部