To the Editor:High-frequency resistance(typically≥15-25%viral quasispecies)detected by conventional resistance assays has long been associated with failure of antiretroviral therapy(ART)to suppress viral replication,...To the Editor:High-frequency resistance(typically≥15-25%viral quasispecies)detected by conventional resistance assays has long been associated with failure of antiretroviral therapy(ART)to suppress viral replication,[1]but the impact of pre-existing lowfrequency resistance on virological response is controversial.Previous studies have shown an increased likelihood of virological response failure in patients with preexisting low-frequency resistance mutations after initiation of antiviral therapy,especially primary ART regimens containing non-nucleoside reverse transcriptase inhibitors(NNRTIs).[2]However,some studies have concluded differently,suggesting that pre-existing lowfrequency resistance mutations do not correlate with viral response failure.[3]This may be related to the method of detection of pre-existing low-frequency resistance mutations.展开更多
Long-lived organic room-temperature phosphorescent(RTP)materials have attracted widespread attention because of their fantastic properties and application prospects.The current methods for developing RTP materials are...Long-lived organic room-temperature phosphorescent(RTP)materials have attracted widespread attention because of their fantastic properties and application prospects.The current methods for developing RTP materials are mainly based on the synthesis of new chromophore molecules and crystallization engineering.However,there are great challenges in the preparation of new chromophore molecules and the use of crystalline materials.Herein,dynamic stimulus-responsive long-lived RTP systems with various emission colors are realized by doping organic chromophore molecules into polymer matrix prepared from vinyl acetate and acrylic acid.Through UV light irradiation,the growth process of long-lived RTP phenomena can be observed for up to 10 s.In particular,the phosphorescence intensity,lifetime,afterglow brightness,and quantum yield of one representative film(P2-M2)increase by 155,262,414,and 8 times after the irradiation,respectively.The unique photophysical phenomena are ascribed to the oxygen consumption characteristics of the polymer matrix under UV irradiation.Meanwhile,the information storage devices are prepared with these RTP systems.This work provides a strategy for achieving small organic molecule-doped polymer RTP systems that are easy to prepare,low-cost,and widely adaptable.展开更多
基金supported by the 2020 Annual Medical Research Project of Jiangsu Commission of Health(No.ZDA 2020014)the Key Project supported by Medical Science and Technology Development Foundation,Nanjing Department of Health(Nos.ZKX 22040 and ZKX 19048)
文摘To the Editor:High-frequency resistance(typically≥15-25%viral quasispecies)detected by conventional resistance assays has long been associated with failure of antiretroviral therapy(ART)to suppress viral replication,[1]but the impact of pre-existing lowfrequency resistance on virological response is controversial.Previous studies have shown an increased likelihood of virological response failure in patients with preexisting low-frequency resistance mutations after initiation of antiviral therapy,especially primary ART regimens containing non-nucleoside reverse transcriptase inhibitors(NNRTIs).[2]However,some studies have concluded differently,suggesting that pre-existing lowfrequency resistance mutations do not correlate with viral response failure.[3]This may be related to the method of detection of pre-existing low-frequency resistance mutations.
基金financially supported by the National Natural Science Foundation of China(21875025)the Special Program of Chongqing Science and Technology Commission(cstc2018jcyjAX0296)+3 种基金the Innovation Research Group at the Institutions of Higher Education in Chongqing(CXQT19027)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K201801101)Chongqing Talent Program,the Science and Technology Project of Banan District,and the Innovation Support Plan for the Returned Overseas of Chongqing(cx2020052)supported by Singapore Academic Research Fund(RT12/19 and MOE-MOET2EP10120-0003)。
文摘Long-lived organic room-temperature phosphorescent(RTP)materials have attracted widespread attention because of their fantastic properties and application prospects.The current methods for developing RTP materials are mainly based on the synthesis of new chromophore molecules and crystallization engineering.However,there are great challenges in the preparation of new chromophore molecules and the use of crystalline materials.Herein,dynamic stimulus-responsive long-lived RTP systems with various emission colors are realized by doping organic chromophore molecules into polymer matrix prepared from vinyl acetate and acrylic acid.Through UV light irradiation,the growth process of long-lived RTP phenomena can be observed for up to 10 s.In particular,the phosphorescence intensity,lifetime,afterglow brightness,and quantum yield of one representative film(P2-M2)increase by 155,262,414,and 8 times after the irradiation,respectively.The unique photophysical phenomena are ascribed to the oxygen consumption characteristics of the polymer matrix under UV irradiation.Meanwhile,the information storage devices are prepared with these RTP systems.This work provides a strategy for achieving small organic molecule-doped polymer RTP systems that are easy to prepare,low-cost,and widely adaptable.