期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
CRISPR-Cas12a base editors confer efficient multiplexed genome editing in rice
1
作者 Yanhao Cheng Yingxiao Zhang +7 位作者 Gen Li Hong Fang Simon Sretenovic Avery Fan Jiang Li Jianping Xu qiudeng Que yiping qi 《Plant Communications》 SCIE CSCD 2023年第4期8-11,共4页
Dear Editor,Many Cas9-derived base editors have been developed for precise C-to-T and A-to-G base editing in plants(Molla et al.,2021).They are typically based on a SpCas9 nickase or its engineered variants with alter... Dear Editor,Many Cas9-derived base editors have been developed for precise C-to-T and A-to-G base editing in plants(Molla et al.,2021).They are typically based on a SpCas9 nickase or its engineered variants with altered protospacer adjacent motif(PAM)requirements(Molla et al.,2021).CRISPR-Cas12a enables highly efficient multiplexed genome editing in plants,and its T-rich PAM preference complements the G-rich PAM requirement of SpCas9 in genome targeting(Zhang et al.,2019,2021).Because of the lack of an efficient Cas12a nickase,it has been challenging to develop efficient Cas12a base editors.Nevertheless,Cas12a cytosine base editors(CBEs)and adenine base editors(ABEs)have been developed in mammalian cells(Li et al.,2018;Kleinstiver et al.,2019)with low DNA damage(Wang et al.,2020)because deactivated Cas12a(dCas12a)was used.However,efficient dCas12a base editors are yet to be developed in plants. 展开更多
关键词 BASE EDITING PRECISE
原文传递
Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems 被引量:19
2
作者 Levi G. Lowder Jianping Zhou +6 位作者 Yingxiao Zhang Aimee Malzahn Zhaohui Zhong Tzung-Fu Hsieh Daniel F. Voytas Yong Zhang yiping qi 《Molecular Plant》 SCIE CAS CSCD 2018年第2期245-256,共12页
User-friendly tools for robust transcriptional activation of endogenous genes are highly demanded in plants. We previously showed that a dCas9-VP64 system consisting of the deactivated CRISPR- associated protein 9 (d... User-friendly tools for robust transcriptional activation of endogenous genes are highly demanded in plants. We previously showed that a dCas9-VP64 system consisting of the deactivated CRISPR- associated protein 9 (dCasg) fused with four tandem repeats of the transcriptional activator VP16 0/1=64) could be used for transcriptional activation of endogenous genes in plants. In this study, we developed a second generation of vector systems for enhanced transcriptional activation in plants. We tested multiple strategies for dCasg-based transcriptional activation, and found that simultaneous recruitment of VP64 by dCas9 and a modified guide RNA scaffold gRNA2.0 (designated CRISPR-Act2.0) yielded stronger transcrip- tional activation than the dCas9-VP64 system. Moreover, we developed a multiplex transcription activator- likeeffector activation (mTALE-Act) system for simultaneous activation of up to four genes in plants. Our results suggest that mTALE-Act is even more effective than CRISPR-Act2.0 in most cases tested. In addition, we explored tissue-specific gene activation using positive feedback loops. Interestingly, our study revealed that certain endogenous genes are more amenable than others to transcriptional activation, and tightly regulated genes may cause target gene silencing when perturbed by activation probes. Hence, these new tools could be used to investigate gene regulatory networks and their control mechanisms. Assembly of multiplex CRISPR-Act2.0 and mTALE-Act systems are both based on streamlined and PCR-independent Golden Gate and Gateway cloning strategies, which will facilitate transcriptional activation applications in both dicots and monocots. 展开更多
关键词 CRISPR gRNA2.0 MS2-VP64 TALE-VP64 multiplex transcriptional activation
原文传递
Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG 被引量:13
3
作者 Zhaohui Zhong Simon Sretenovic +15 位作者 qiurong Ren Lijia Yang Yu Bao Caiyan qi Mingzhu Yuan Yao He Shishi Liu Xiaopei Liu Jiaheng Wang Lan Huang Yan Wang Dibin Baby David Wang Tao Zhang yiping qi Yong Zhang 《Molecular Plant》 SCIE CAS CSCD 2019年第7期1027-1036,共10页
Two recently engineered SpCas9 variants, namely xCas9 and Cas9-NG, show promising potential in improving targeting specificity and broadening the targeting range. In this study, we evaluated these Cas9 variants in the... Two recently engineered SpCas9 variants, namely xCas9 and Cas9-NG, show promising potential in improving targeting specificity and broadening the targeting range. In this study, we evaluated these Cas9 variants in the model and crop plant, rice. We first tested xCas9-3.7, the most effective xCas9 variant in mammalian cells, for targeted mutagenesis at 16 possible NGN PAM (protospacer adjacent motif) combinations in duplicates. xCas9 exhibited nearly equivalent editing efficiency to wild-type Cas9 (Cas9-WT) at most canonical NGG PAM sites tested, whereas it showed limited activity at non-canonical NGH (H = A, C, T) PAM sites. High editing efficiency of xCas9 at NGG PAMs was further demonstrated with C to T base editing by both rAPOBECI and PmCDAI cytidine deaminases. With mismatched sgRNAs, we found that xCas9 had improved targeting specificity over the Cas9-WT. Furthermore, we tested two Cas9-NG variants, Cas9-NGv1 and Cas9-NG, for targeting NGN PAMs. Both Cas9-NG variants showed higher editing efficiency at most non-canonical NG PAM sites tested, and enabled much more efficient editing than xCas9 at AT-rich PAM sites such as GAT, GAA, and CAA. Nevertheless, we found that Cas9-NG variants showed significant reduced activity at the canonical NGG PAM sites. In stable transgenic rice lines, we demonstrated that Cas9-NG had much higher editing efficiency than Cas9-NGv1 and xCas9 at NG PAM sites. To expand the base-editing scope, we developed an efficient C to T base-editing system by making fusion of Cas9-NG nickase (D10A version), PmCDAI, and UGI. Taken together, our work benchmarked xCas9 as a high-fidelity nuclease for targeting canonical NGG PAMs and Cas9-NG as a preferred variant for targeting relaxed PAMs for plant genome editing. 展开更多
关键词 xCas9 Cas9-NG high fidelity non-canonical PAM base EDITING
原文传递
Plant Prime Editors Enable Precise Gene Editing in Rice Cells 被引量:21
4
作者 Xu Tang Simon Sretenovic +10 位作者 qiurong Ren Xinyu Jia Mengke Li Tingting Fan Desuo Yin Shuyue Xiang Yachong Guo Li Liu Xuelian Zheng yiping qi Yong Zhang 《Molecular Plant》 SCIE CAS CSCD 2020年第5期667-670,共4页
Genome editing is revolutionizing plant research and crop breeding.Sequence-specific nucleases(SSNs)such as zinc finger nuclease(ZFN)and TAL effector nuclease(TALEN)have been used to create site-specific DNA double-st... Genome editing is revolutionizing plant research and crop breeding.Sequence-specific nucleases(SSNs)such as zinc finger nuclease(ZFN)and TAL effector nuclease(TALEN)have been used to create site-specific DNA double-strand breaks and to achieve precise DNA modifications by promoting homology-directed repair(HDR)(Steinert et al.,2016;Voytas,2013).Later,RNA-guided SSNs such as CRISPR-Cas9,Cas12a,Cas12b,and their variants were applied for genome editing in plants(Li et al.,2013;Nekrasov et alM 2013;Tang et al.,2017;Zhong et al.,2019;Ming et al.,2020;Tang et al.,2019).However,HDR relies on simultaneous delivery of SSNs and DNA donors,which has been challenging in plants(Steinert et al.,2016;Zhang et aL,2019).Another challenge for realizing efficient HDR in plants is that DNA repair favors nonhomologous end joining(NHEJ)pathways over HDR in most cell types(Puchta,2005;Qi et al.,2013). 展开更多
关键词 PRECISE PRIME PLANT
原文传递
ZFN,TALEN and CRISPR-Cas9 mediated homology directed gene insertion in Arabidopsis:A disconnect between somatic and germinal cells 被引量:9
5
作者 qiwei Shan Nicholas J.Baltes +9 位作者 Paul Atkins Elida R. Kirkland Yong Zhang Joshua A.Ballet Levi G.Lowder Aimee A.Malzahn John C.Haugner Ⅲ Burckhard Seelig Daniel F. Voytas yiping qi 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2018年第12期681-684,共4页
Breakthroughs in the generation of programmable sequence-specific nucleases (SSNs), such as zinc finger nucleases (ZFNs),TAL effector nucleases (TALENs) and the RNA-directed nuclease CRISPR-associated protein 9 (Cas9)... Breakthroughs in the generation of programmable sequence-specific nucleases (SSNs), such as zinc finger nucleases (ZFNs),TAL effector nucleases (TALENs) and the RNA-directed nuclease CRISPR-associated protein 9 (Cas9), have greatly increased the ease of plant genome engineering (Voytas, 2013; Malzahn et al.,2017). Programmable SSNs introduce a DNA double-strand break 展开更多
关键词 ZFN TALEN and CRISPR-Cas9 mediated homology directed gene insertion in Arabidopsis GUS A disconnect between somatic and germinal cells
原文传递
Development of japonica Photo-Sensitive Genic Male Sterile Rice Lines by Editing Carbon Starved Anther Using CRISPR/Cas9 被引量:27
6
作者 Quanlin Li Dabing Zhang +4 位作者 Mingjiao Chen Wanqi Liang Jiaojun Wei yiping qi Zheng Yuan 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2016年第6期415-419,共5页
Rice is one of the most important crops as it supports over25%of total caloric intake for humans(Kusano et al.,2015).The world population reached 7.3 billion in 2015 and is projected to reach 8.5 billion in 2030(Wo... Rice is one of the most important crops as it supports over25%of total caloric intake for humans(Kusano et al.,2015).The world population reached 7.3 billion in 2015 and is projected to reach 8.5 billion in 2030(Word Population Prospects:2015 Revision). 展开更多
关键词 arable intake scarce fertility sterile projected sterility breeding crops deletion
原文传递
Expanding plant genome-editing scope by an engineered iSpyMacCas9 system that targets A-rich PAM sequences 被引量:1
7
作者 Simon Sretenovic Desuo Yin +3 位作者 Adam Levav Jeremy D.Selengut Stephen M.Mount yiping qi 《Plant Communications》 2021年第2期78-88,共11页
The most popular CRISPR-SpCas9 systemrecognizes canonical NGG protospacer adjacent motifs(PAMs).Previously engineered SpCas9 variants,such as Cas9-NG,favor G-rich PAMs in genome editing.In this manuscript,we describe ... The most popular CRISPR-SpCas9 systemrecognizes canonical NGG protospacer adjacent motifs(PAMs).Previously engineered SpCas9 variants,such as Cas9-NG,favor G-rich PAMs in genome editing.In this manuscript,we describe a new plant genome-editing system based on a hybrid iSpyMacCas9 platform that allows for targeted mutagenesis,C to T base editing,and A to G base editing at A-rich PAMs.This study fills amajor technology gap in the CRISPR-Cas9 system for editing NAAR PAMs in plants,which greatly expands the targeting scope of CRISPR-Cas9.Finally,our vector systems are fully compatible with Gateway cloning and will work with all existing single-guide RNA expression systems,facilitating easy adoption of the systems by others.We anticipate that more tools,such as prime editing,homology-directed repair,CRISPR interference,and CRISPR activation,will be further developed based on our promising iSpyMac-Cas9 platform. 展开更多
关键词 plant genome editing iSpyMacCas9 PAM cytosine base editing adenine base editing
原文传递
CRISPR ribonucleoprotein-mediated genetic engineering in plants 被引量:1
8
作者 Yingxiao Zhang Brian Iaffaldano yiping qi 《Plant Communications》 2021年第2期38-50,共13页
CRISPR-derived biotechnologies have revolutionized the genetic engineering field and have been widely applied in basic plant research and crop improvement.Commonly used Agrobacterium-or particle bombardment-mediated t... CRISPR-derived biotechnologies have revolutionized the genetic engineering field and have been widely applied in basic plant research and crop improvement.Commonly used Agrobacterium-or particle bombardment-mediated transformation approaches for the delivery of plasmid-encoded CRISPR reagents can result in the integration of exogenous recombinant DNA and potential off-target mutagenesis.Editing efficiency is also highly dependent on the design of the expression cassette and its genomic insertion site.Genetic engineering using CRISPR ribonucleoproteins(RNPs)has become an attractive approach with many advantages:DNA/transgene-free editing,minimal off-target effects,and reduced toxicity due to the rapid degradation of RNPs and the ability to titrate their dosage while maintaining high editing efficiency.Although RNP-mediated genetic engineering has been demonstrated in many plant species,its editing efficiency remains modest,and its application in many species is limited by difficulties in plant regeneration and selection.In this review,we summarize current developments and challenges in RNPmediated genetic engineering of plants and provide future research directions to broaden the use of this technology. 展开更多
关键词 CRISPR RNP genetic engineering genome editing transgene free
原文传递
Diverse Systems for Efficient Sequence Insertion and Replacement in Precise Plant Genome Editing 被引量:1
9
作者 Yingxiao Zhang yiping qi 《BioDesign Research》 2020年第1期107-110,共4页
CRISPR-mediated genome editing has been widely applied in plants to make uncomplicated genomic modifications including gene knockout and base changes.However,the introduction of many genetic variants related to valuab... CRISPR-mediated genome editing has been widely applied in plants to make uncomplicated genomic modifications including gene knockout and base changes.However,the introduction of many genetic variants related to valuable agronomic traits requires complex and precise DNA changes.Different CRISPR systems have been developed to achieve efficient sequence insertion and replacement but with limited success.A recent study has significantly improved NHEJ-and HDR-mediated sequence insertion and replacement using chemically modified donor templates.Together with other newly developed precise editing systems,such as prime editing and CRISPR-associated transposases,these technologies will provide new avenues to further the plant genome editing field. 展开更多
关键词 TRAITS PRECISE INSERTION
原文传递
Plant Genome Editing Using FnCpfl and LbCpf Nucleases at Redefined and Altered PAM-Sites 被引量:10
10
作者 ZhaohuiZhong Yingxiao Zhang +12 位作者 qi You XU Tang qiurong Ren Shishi Liu Lijia Yang Yan Wang Xiaopei Liu Binglin Liu Tao Zhang Xuelian Zheng Ysa Le Yong Zhang yiping qi 《Molecular Plant》 SCIE CAS CSCD 2018年第7期999-1002,共4页
Dear Editor CRISPR from Prevotella and Francisella 1 (Cpfl) is an emerging RNA-guided endonuclease system that relies on thymidine-rich protospacer adjacent motif (PAM) for DNA targeting (Zetsche et al., 2015). ... Dear Editor CRISPR from Prevotella and Francisella 1 (Cpfl) is an emerging RNA-guided endonuclease system that relies on thymidine-rich protospacer adjacent motif (PAM) for DNA targeting (Zetsche et al., 2015). CRISPR-Cpfl has unique features that could be advantageous over the CRISPR-Cas9 system. For example, Cpfl requires only a 42 nt crRNA, while Cas9 uses 100 nt gRNA. While Cas9 generates blunt ends of DNA breaks, the Cpfl cleavage results in 5' overhangs distal from the protospacer, which may improve efficiency for NHEJ-based gene insertion. Interestingly, Cpfl proteins also have RNase activity (Fonfara et al., 2016), which was utilized to process crRNA arrays for multiplexed genome editing in both mammalian systems and plants (Wang et al., 2017; Zetsche et al., 2017). 展开更多
原文传递
Hypercompact CRISPR–Cas12j2 (CasF) enables genome editing, gene activation, and epigenome editing in plants
11
作者 Shishi Liu Simon Sretenovic +14 位作者 Tingting Fan Yanhao Cheng Gen Li Aileen qi Xu Tang Yang Xu Weijun Guo Zhaohui Zhong Yao He Yanling Liang qinqin Han Xuelian Zheng Xiaofeng Gu yiping qi Yong Zhang 《Plant Communications》 SCIE 2022年第6期131-134,共4页
CRISPR-Cas9,-Cas12a,-Cas12b,and-Cas13 have been harnessed for genome engineering in human and plant cells(Liu et al.,2022).However,the large size of these Cas proteins(e.g.190 kDa for SpCas9)makes them difficult to de... CRISPR-Cas9,-Cas12a,-Cas12b,and-Cas13 have been harnessed for genome engineering in human and plant cells(Liu et al.,2022).However,the large size of these Cas proteins(e.g.190 kDa for SpCas9)makes them difficult to deliver into cells via a viral vector.The development of smaller Cas proteins will lead to reduced viral vector sizes that can be more widely adopted in versatile genome engineering systems.Recently,a CRISPR-Cas12j2(CasF)system was discovered in huge phages and developed into a hypercompact genome editor due to the small size of Cas12j2(80 kDa)(Pausch et al.,2020).Unfortunately,the gene editing efficiency of Cas12j2 in Arabidopsis protoplasts using ribonucleoprotein delivery was less than one percent(Pausch et al.,2020).Further optimization of this system is clearly required if CRISPR-Cas12j2-mediated editing in plant genomes is to be adopted by the plant sciences community. 展开更多
关键词 CRISPR ACTIVATION system
原文传递
CRISPR-Cas nucleases and base editors for plant genome editing
12
作者 Filiz Gurel Yingxiao Zhang +1 位作者 Simon Sretenovic yiping qi 《aBIOTECH》 2020年第1期74-87,共14页
Clustered regularly interspaced short palindromic repeats(CRISPR)—CRISPR-associated protein(Cas)and base editors are fundamental tools in plant genome editing.Cas9 from Streptococcus pyogenes(SpCas9),recognizing an N... Clustered regularly interspaced short palindromic repeats(CRISPR)—CRISPR-associated protein(Cas)and base editors are fundamental tools in plant genome editing.Cas9 from Streptococcus pyogenes(SpCas9),recognizing an NGG protospacer adjacent motif(PAM),is a widely used nuclease for genome editing in living cells.Cas12a nucleases,targeting T-rich PAMs,have also been recently demonstrated in several plant species.Furthermore,multiple Cas9 and Cas12a engineered variants and orthologs,with different PAM recognition sites,editing efficiencies and fidelity,have been explored in plants.These RNA-guided sequence-specific nucleases(SSN)generate double-stranded breaks(DSBs)in DNA,which trigger non-homologous end-joining(NHEJ)repair or homology-directed repair(HDR),resulting in insertion and deletion(indel)mutations or precise gene replacement,respectively.Alternatively,genome editing can be achieved by base editors without introducing DSBs.So far,several base editors have been applied in plants to introduce C-to-T or A-to-G transitions,but they are still undergoing improvement in editing window size,targeting scope,off-target effects in DNA and RNA,product purity and overall activity.Here,we summarize recent progress on the application of Cas nucleases,engineered Cas variants and base editors in plants. 展开更多
关键词 CRISPR SpCas9 Cas12a Cas12b PAM Cytidine/adenine base editors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部