Background'. In recent years, much evidence has emerged to indicate that exercise can benefit people when performed properly. This reviewsummarizes the exercise interventions used in studies involving mice as they...Background'. In recent years, much evidence has emerged to indicate that exercise can benefit people when performed properly. This reviewsummarizes the exercise interventions used in studies involving mice as they are related to special diseases or physiological status. To furtherunderstand the effects of exercise interventions in treating or preventing diseases, it is important to establish a template for exercise interventionsthat can be used in future exercise-related studies.Methods'. PubMed was used as the data resource for articles. To identify studies related to the effectiveness of exercise interventions for treatingvarious diseases and organ functions in mice, we used the following search language: (exercise [Title] OR training [Title] OR physical activity[Title]) AND (mice [title/abstract] OR mouse [title/abstract] OR mus [title/abstract]). To limit the range of search results, we included 2 filters:one that limited publication dates to "in 10 years,^ and one that sorted the results as "best match^^. Then we grouped the commonly used exercisemethods according to their similarities and differences. We then evaluated the effectiveness of the exercise interventions for their impact on diseasesand organ functions in 8 different systems.Results'. A total of 331 articles were included in the analysis procedure. The articles were then segmented into 8 systems for which the exerciseinterventions were used in targeting and treating disorders: motor system (60 studies), metabolic system (45 studies), cardio-cerebral vascularsystem (58 studies), nervous system (74 studies), immune system (32 studies), respiratory system (7 studies), digestive system (1 study), and thesystem related to the development of cancer (54 studies). The methods of exercise interventions mainly involved the use of treadmills, voluntarywheel-running, forced wheel-running, swimming, and resistance training. It was found that regardless of the specific exercise method used, mostof them demonstrated positive effects on various systemic diseases and organ functions. Most diseases were remitted with exercise regardless ofthe exercise method used, although some diseases showed the best remission effects when a specific method was used.Conclusion-. Our review strongly suggests that exercise intervention is a cornerstone in disease prevention and treatment in mice. Because exerciseinterventions in humans typically focus on chronic diseases, national fitness, and body weight loss, and typically have low intervention com・pliance rates, it is important to use mice models to investigate the molecular mechanisms underlying the health benefits from exerciseinterventions in humans.展开更多
基金supported by the Major Research Plan of the National Natural Science Foundation of China (91749104)the Emergency Management Project of the National Natural Science Foundation of China (31842034)+3 种基金the Shanghai Pujiang Talent Project (18PJ1400700)the Science and Technology Innovation Action Plan of Shanghai Science and Technology Committee (18140901300)the Open Research Fund of the National Key Laboratory of Genetic Engineering (SKLGE1803)the Open Research Fund of the State Key Laboratory of Pharmaceutical Biotechnology (KF-GN201701) to TML
文摘Background'. In recent years, much evidence has emerged to indicate that exercise can benefit people when performed properly. This reviewsummarizes the exercise interventions used in studies involving mice as they are related to special diseases or physiological status. To furtherunderstand the effects of exercise interventions in treating or preventing diseases, it is important to establish a template for exercise interventionsthat can be used in future exercise-related studies.Methods'. PubMed was used as the data resource for articles. To identify studies related to the effectiveness of exercise interventions for treatingvarious diseases and organ functions in mice, we used the following search language: (exercise [Title] OR training [Title] OR physical activity[Title]) AND (mice [title/abstract] OR mouse [title/abstract] OR mus [title/abstract]). To limit the range of search results, we included 2 filters:one that limited publication dates to "in 10 years,^ and one that sorted the results as "best match^^. Then we grouped the commonly used exercisemethods according to their similarities and differences. We then evaluated the effectiveness of the exercise interventions for their impact on diseasesand organ functions in 8 different systems.Results'. A total of 331 articles were included in the analysis procedure. The articles were then segmented into 8 systems for which the exerciseinterventions were used in targeting and treating disorders: motor system (60 studies), metabolic system (45 studies), cardio-cerebral vascularsystem (58 studies), nervous system (74 studies), immune system (32 studies), respiratory system (7 studies), digestive system (1 study), and thesystem related to the development of cancer (54 studies). The methods of exercise interventions mainly involved the use of treadmills, voluntarywheel-running, forced wheel-running, swimming, and resistance training. It was found that regardless of the specific exercise method used, mostof them demonstrated positive effects on various systemic diseases and organ functions. Most diseases were remitted with exercise regardless ofthe exercise method used, although some diseases showed the best remission effects when a specific method was used.Conclusion-. Our review strongly suggests that exercise intervention is a cornerstone in disease prevention and treatment in mice. Because exerciseinterventions in humans typically focus on chronic diseases, national fitness, and body weight loss, and typically have low intervention com・pliance rates, it is important to use mice models to investigate the molecular mechanisms underlying the health benefits from exerciseinterventions in humans.