期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Metal–phenolic coordination crystals derived magnetic hollow carbon spheres for ultrahigh electromagnetic wave absorption 被引量:3
1
作者 Hanxiao Xu Zizhuang He +2 位作者 yiruo wang Xiangru Ren Panbo Liu 《Nano Research》 SCIE EI CSCD 2024年第3期1616-1624,共9页
Owing to the tunable compositions and versatile functionality,the development of eco-friendly metal–phenolic coordination crystals derivatives is highly anticipated for electromagnetic wave absorption.In this study,t... Owing to the tunable compositions and versatile functionality,the development of eco-friendly metal–phenolic coordination crystals derivatives is highly anticipated for electromagnetic wave absorption.In this study,three kinds of magnetic hollow carbon spheres(HCSs)with macro-meso-microporous characteristics,including Fe/HCS,Co/HCS,and CoNi/HCS,are successfully fabricated via the co-operative hard template and self-assembling process,in which magnetic particles are encapsulated in carbon shell matrix after the pyrolysis of metal–polyphenol coordination crystals and further subsequent template removal.On the one hand,hierarchical macro-meso-micropores effectively balance the impedance gap between absorbers and air and introduce structural defects or distortion,leading to matched impedance and enhanced dipolar/defect polarization.On the other hand,wrapped magnetic particles provide uncountable hetero-interfaces and induce ferromagnetic resonance,resulting in strengthened interfacial polarization and additional magnetic loss.In particular,enhanced minimum reflection loss(RL,min)and broadband effective absorption bandwidth(EAB)are achieved with only 10 wt.%filler loading.Specifically,the RL,min and EAB values are-57.5 dB and 7.2 GHz for Fe/HCS,-50.0 dB and 5.8 GHz for Co/HCS,and-52.1 dB and 6.7 GHz for CoNi/HCS,respectively.Moreover,this work provides us a modular-assembly strategy to regulate the hollow cavity of absorbers and simultaneously manipulates the chemical components of absorbers to regulate electromagnetic wave absorption performance. 展开更多
关键词 hollow engineering hierarchical pores hetero-interfaces synergetic effect electromagnetic wave absorption
原文传递
Heteroatoms-doped carbon nanocages with enhanced dipolar and defective polarization toward light-weight microwave absorbers 被引量:3
2
作者 Hanxiao Xu Guozheng Zhang +4 位作者 Yi wang yiruo wang Huanlei wang Ying Huang Panbo Liu 《Nano Research》 SCIE EI CSCD 2022年第10期8705-8713,共9页
Light-weight and exceptional microwave absorption are two vital characteristics for microwave absorbers in practical applications,but still face challenges.Herein,we employ a sacrificial template strategy to fabricate... Light-weight and exceptional microwave absorption are two vital characteristics for microwave absorbers in practical applications,but still face challenges.Herein,we employ a sacrificial template strategy to fabricate heteroatoms-doped carbon nanocages(CNs)via chemical vapor deposition,in which heteroatoms are simultaneously doped into the carbon frameworks by bubbling flowing source liquid.Compared with CNs,doped heteroatoms,accompanied with the inevitably defective arrangements in the lattice,not only decrease the electrical conductivity and balance the impedance characteristics,but also introduce structuralchemical defects and trigger dominant dipolar/defect polarization.As a result,both the minimum reflection loss(R_(L,min))and effective absorption bandwidth(EAB)greatly increase at an ultralow filler loading of 5 wt.%owing to internal hollow void and high specific surface area.The R_(L,min) values reach−53.6,−43.2,and−50.1 dB for N-CNs,S-CNs,and N,S-CNs with the corresponding EAB of 4.9,2.5,and 3.1 GHz,respectively.Furthermore,this work provides an effective strategy for the construction of heteroatoms-doped hollow carbon frameworks in large-scale production and the obtained doped carbon nanocages can be used as light-weight and high-performance microwave absorbers. 展开更多
关键词 carbon nanocages hollow structure HETEROATOMS dipolar resonance microwave absorption
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部