期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Representation learning: serial-autoencoder for personalized recommendation
1
作者 Yi ZHU yishuai geng +2 位作者 Yun LI Jipeng QIANG Xindong WU 《Frontiers of Computer Science》 SCIE EI CSCD 2024年第4期61-72,共12页
Nowadays,the personalized recommendation has become a research hotspot for addressing information overload.Despite this,generating effective recommendations from sparse data remains a challenge.Recently,auxiliary info... Nowadays,the personalized recommendation has become a research hotspot for addressing information overload.Despite this,generating effective recommendations from sparse data remains a challenge.Recently,auxiliary information has been widely used to address data sparsity,but most models using auxiliary information are linear and have limited expressiveness.Due to the advantages of feature extraction and no-label requirements,autoencoder-based methods have become quite popular.However,most existing autoencoder-based methods discard the reconstruction of auxiliary information,which poses huge challenges for better representation learning and model scalability.To address these problems,we propose Serial-Autoencoder for Personalized Recommendation(SAPR),which aims to reduce the loss of critical information and enhance the learning of feature representations.Specifically,we first combine the original rating matrix and item attribute features and feed them into the first autoencoder for generating a higher-level representation of the input.Second,we use a second autoencoder to enhance the reconstruction of the data representation of the prediciton rating matrix.The output rating information is used for recommendation prediction.Extensive experiments on the MovieTweetings and MovieLens datasets have verified the effectiveness of SAPR compared to state-of-the-art models. 展开更多
关键词 personalized recommendation autoencoder representation learning collaborative filtering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部