Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction...Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction are undermined since the surface-mantled,electronegative-OH groups hinder the charge transfer between transition metal atoms and nitrogen molecules.Herein,a smart interfacing strategy is proposed to construct a coupled heterointerface between LDH and 2D g-C_(3)N_(4),which is proven by density functional theory(DFT)investigations to be favorable for nitrogen adsorption and ammonia desorption compared with neat LDH surface.The interfaced LDH and g-C_(3)N_(4) is further hybridized with a self-standing TiO_(2) nanofibrous membrane(NM)to maximize the interfacial effect owing to its high porosity and large surface area.Profited from the synergistic superiorities of the three components,the LDH@C_(3)N_(4)@TiO_(2) NM delivers superior ammonia yield(2.07×10^(−9) mol s^(−1) cm^(−2))and Faradaic efficiency(25.3%),making it a high-efficiency,noble-metal-free catalyst system toward electrocatalytic nitrogen reduction.展开更多
With current success of large-scale pre-trained models(PTMs),how efficiently adapting PTMs to downstream tasks has attracted tremendous attention,especially for PTMs with billions of parameters.Previous work focuses o...With current success of large-scale pre-trained models(PTMs),how efficiently adapting PTMs to downstream tasks has attracted tremendous attention,especially for PTMs with billions of parameters.Previous work focuses on designing parameter-efficient tuning paradigms but needs to save and compute the gradient of the whole computational graph.In this paper,we propose y-Tuning,an efficient yet effective paradigm to adapt frozen large-scale PTMs to specific downstream tasks.y-Tuning learns dense representations for labels y defined in a given task and aligns them to fixed feature representation.Without computing the gradients of text encoder at training phrase,y-Tuning is not only parameterefficient but also training-efficient.Experimental results show that for DeBERTaxxL with 1.6 billion parameters,y-Tuning achieves performance more than 96%of full fine-tuning on GLUE Benchmark with only 2%tunable parameters and much fewer training costs.展开更多
NH_(3) plays an essential role in human life since it is an important raw material for fertilizers,plastics and rubbers production.As an NH_(3) synthesis technology under ambient conditions,electrocatalytic N_(2) redu...NH_(3) plays an essential role in human life since it is an important raw material for fertilizers,plastics and rubbers production.As an NH_(3) synthesis technology under ambient conditions,electrocatalytic N_(2) reduction reaction(NRR)has great potential to replace the energy-intensive Haber-Bosch process.The key of electrocatalytic NRR is the exploration of efficient catalysts.Transition metal Mo is promising since it exists naturally in nitrogenase due to the unique Mo-N_(2) interaction;particularly in the form of 2D material such as MoSe_(2),the surface area is maximized for more active sites.However,the NRR performance of MoSe_(2) is still unsatisfactory because Mo is only exposed at the semi-open edge,and the electronegative Se-mantled surface area remains inaccessible to N_(2).Herein,we propose a simple and effective strategy to create high-concentration Se vacancies in MoSe_(2) through heteroatom doping induced lattice strain,which effectively enhances the Mo-N_(2) interaction on the surface area.In result,high NH_(3) yield(3.04×10^(–10)mol s^(–1)cm^(–2))and Faraday efficiency(21.61%)are attained at–0.45 V vs.RHE in 0.1 mol/L Na_(2)SO_(4).展开更多
To the Editor:Acoustic neuroma is the most common tumor in the cerebellopontine angle(CPA)area.The surgical approaches used for acoustic neuroma include the labyrinth,middle cranial fossa,posterior sigmoid sinus,and p...To the Editor:Acoustic neuroma is the most common tumor in the cerebellopontine angle(CPA)area.The surgical approaches used for acoustic neuroma include the labyrinth,middle cranial fossa,posterior sigmoid sinus,and posterior labyrinth routes.However,regardless of the approach used to expose the tumor in the internal auditory canal(IAC),the bone around the IAC must be abraded,which inevitably exposes the surrounding air cells to damage and increases the risk of cerebrospinal fluid(CSF)leak after surgery.展开更多
TiO2(B) is an attractive new anode candidate for lithium-ion batteries (LIBs) due to its unique and highly desirable properties, including high structural integrity, long cycle life, and low cost. However, despite...TiO2(B) is an attractive new anode candidate for lithium-ion batteries (LIBs) due to its unique and highly desirable properties, including high structural integrity, long cycle life, and low cost. However, despite these merits, its inherent slow lithium and electron transport kinetics hinder its practical application to LIBs. Here, we propose a novel, simple route towards multi-dimensionally ordered, multi-functionally integrated reduced graphene oxide (r-GO)@TiO2(B)@Mn304 yolk-membrane-shell superstructures in which r-GO nanosheets, TiO2(B) nanosheets, and Mn304 nanoparticles are hierarchically organized to achieve remarkable synergistic interactions. This hybridization design is fundamentally bilateral in nature, aiming to overcome the conductivity and capacity deficiencies of TiO2(B) simultaneously. The resulting r-GO@TiO2(B)@Mn304 yolk-membrane- shell superstructures have great potential as advanced anode materials for ultrafast lithium storage, delivering a strikingly high reversible capacity of 662 mA.h-g-1 at 500 mA-g^-1 after 500 charge-discharge cycles.展开更多
As an alloying type anode material, silicon is a promising alternative of graphitic carbon due to its high theoretical capacity and natural abundance. Developing an industrially viable silicon anode, however, is still...As an alloying type anode material, silicon is a promising alternative of graphitic carbon due to its high theoretical capacity and natural abundance. Developing an industrially viable silicon anode, however, is still a huge challenge because of several problems: First of all, the common process to synthesize a silicon anode is complicated, costly, and energy-intensive. Besides, the huge volume expansion, inevitable side reactions with the electrolyte, and low intrinsic conductivity of silicon are eventually responsible for the poor cyclability and unsatisfactory rate capability. Herein, we aim to address these issues by proposing synthesis of hollow Si@void@C yolk-shell microspheres from sand by low-temperature aluminothermic reduction, which energetically combines a cost-effective silicon source with an energy-efficient, highyield methodology. The hollow Si@void@C yolk-shell microspheres effectively accommodate the diffusion-induced stress by providing the hollow interior and the void space. Moreover, the carbon shell not only functions as an electrolyte-blocking layer to protect the silicon yolk from undesirable side reactions and SEI formation, but also acts as a conductive framework to reduce the resistance to electron and Li^+ ion transport. Benefiting from these synergistic effects, the hollow Si@void@C yolk-shell microspheres exhibit superior long-term cyclability and rate capability.展开更多
The advancement of electrocatalytic N2 reduction reaction (NRR) toward ambient NH3 synthesis lies in the development of more affordable electrocatalysts than noble metals. Recently, various nanostructures of transitio...The advancement of electrocatalytic N2 reduction reaction (NRR) toward ambient NH3 synthesis lies in the development of more affordable electrocatalysts than noble metals. Recently, various nanostructures of transition metal compounds have been proposed as effective electrocatalysts;however, they exist in the form of loose powders, which have to be immobilized on a matrix before serving as the electrode for electrolysis. The matrix, being it carbon paper, carbon cloth or metal foam, is electrocatalytically inactive, whose introduction inevitably raises the invalid weight while sacrificing the active sites of the electrode. Herein, we report on the fabrication of a flexible ZrO2 nanofibrous membrane as a novel, self-supported electrocatalyst. The heteroatom doping can not only endow the nanofibrous membrane with excellent flexibility, but also induce oxygen vacancies which are responsible for easier adsorption of N2 on the ZrO2 surface. To improve the electrocatalytic activity, a facile SILAR approach is employed to decorate it with CdS quantum dots (QDs), thereby tuning its Fermi level. To improve the conductivity, a g-C3N4 nanolayer is further deposited which is both conductive and active. The resulting hierarchically structured, self-supported electrocatalyst, consisting of g-C3N4 encapsulated ZrO2 nanofibrous membrane decorated with CdS QDs, integrates the merits of the three components, and exhibits a remarkable synergy toward NRR. Excellent NH3 yield of 6.32 × 10−10 mol·s−1cm−2 (−0.6 V vs. RHE) and Faradaic efficiency of 12.9% (−0.4 V vs. RHE) are attained in 0.1 M Na2SO4.展开更多
In this study,a simple and efficient way is demonstrated to create strong interfacial interaction between graphene oxide(GO)filler and poly(vinyl alcohol)(PVA)matrix through metal ion coordination.The coordination bon...In this study,a simple and efficient way is demonstrated to create strong interfacial interaction between graphene oxide(GO)filler and poly(vinyl alcohol)(PVA)matrix through metal ion coordination.The coordination bonding provides efficient load transfer during the tensile process,and enhances the mechanical properties of the nanocomposites significantly.After being coordinated with Cu(Ⅱ)ions,GO/PVA composites show much higher Young’s moduli and yield stresses than pure PVA and noncoordinated GO/PVA.UV–vis and FTIR spectra are performed to confirm the successful coordination between GO and PVA.Ethylene diamine tetraacetic acid disodium salt(EDTA-2 Na)is used to confirm the important role of coordination in enhancing the composites.This research provides a new approach to manufacture polymer-matrix nanocomposites with significantly improved mechanical performances.展开更多
Electrocatalysis plays an increasingly important role in converting atmospheric molecules(e.g.,N_(2),CO_(2) and H_(2)O)to value-added products(e.g.,NH_(3),C_(2)H_(4)and H_(2)).However,developing a simple strategy for ...Electrocatalysis plays an increasingly important role in converting atmospheric molecules(e.g.,N_(2),CO_(2) and H_(2)O)to value-added products(e.g.,NH_(3),C_(2)H_(4)and H_(2)).However,developing a simple strategy for preparing catalysts with high performance for the effective conversion of clean energy is still full of chal-lenges.Herein,we describe a straightforward,one-step reduction method to achieve the formation of Pt nanoparticles(NPs)and the vacancy engineering of TiO_(2-x)nanofibers(NFs)simultaneously,which can be accomplished in 5 min.Furthermore,a Pt/TiO_(2-x)nanofibrous aerogel(NA)with an ordered cellular archi-tecture is prepared through a directional freezing technology.The Pt/TiO_(2-x)NA with excellent mechanical properties can be made into a self-supporting electrode for electrocatalytic N_(2)reduction reaction(NRR),showing high NH_(3) yield rate(4.81×10^(-10)mol/s cm^(-2))and Faraday efficiency(14.9%)at-0.35 V vs.RHE.展开更多
Through the analysis of the circuit structure and electromagnetic interference(EMI)conduction path,the structure of the traditional harmonic filter is optimized so that it has the ability to suppress EMI.Using the str...Through the analysis of the circuit structure and electromagnetic interference(EMI)conduction path,the structure of the traditional harmonic filter is optimized so that it has the ability to suppress EMI.Using the structure of planar magnetic integration not only ensures the basic harmonic suppression ability of the harmonic filter,but also improves the EMI suppression effect.With a single-phase voltage source 500-W SiC inverter as the platform,the feasibility and effectiveness of the design scheme are experimentally verified.The results indicated that the planar magnetic integrated harmonic EMI filter satisfies the design requirements.Additionally,the proposed planar magnetic integration scheme can significantly reduce the volume and weight of the filter and increase the power density of the entire system.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52173055 and 21961132024)the Natural Science Foundation of Shanghai(No.19ZR1401100)+3 种基金the International Cooperation Fund of Science and Technology Commission of Shanghai Municipality(No.21130750100)the Innovation Program of Shanghai Municipal Education Commission(No.2017-01-07-00-03-E00024)the Fundamental Research Funds for the Central Universities(No.18D310109)the DHU Distinguished Young Professor Program(No.LZA2020001).
文摘Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction are undermined since the surface-mantled,electronegative-OH groups hinder the charge transfer between transition metal atoms and nitrogen molecules.Herein,a smart interfacing strategy is proposed to construct a coupled heterointerface between LDH and 2D g-C_(3)N_(4),which is proven by density functional theory(DFT)investigations to be favorable for nitrogen adsorption and ammonia desorption compared with neat LDH surface.The interfaced LDH and g-C_(3)N_(4) is further hybridized with a self-standing TiO_(2) nanofibrous membrane(NM)to maximize the interfacial effect owing to its high porosity and large surface area.Profited from the synergistic superiorities of the three components,the LDH@C_(3)N_(4)@TiO_(2) NM delivers superior ammonia yield(2.07×10^(−9) mol s^(−1) cm^(−2))and Faradaic efficiency(25.3%),making it a high-efficiency,noble-metal-free catalyst system toward electrocatalytic nitrogen reduction.
基金National Key R&D Program of China(No.2020AAA0108702)National Natural Science Foundation of China(Grant No.62022027).
文摘With current success of large-scale pre-trained models(PTMs),how efficiently adapting PTMs to downstream tasks has attracted tremendous attention,especially for PTMs with billions of parameters.Previous work focuses on designing parameter-efficient tuning paradigms but needs to save and compute the gradient of the whole computational graph.In this paper,we propose y-Tuning,an efficient yet effective paradigm to adapt frozen large-scale PTMs to specific downstream tasks.y-Tuning learns dense representations for labels y defined in a given task and aligns them to fixed feature representation.Without computing the gradients of text encoder at training phrase,y-Tuning is not only parameterefficient but also training-efficient.Experimental results show that for DeBERTaxxL with 1.6 billion parameters,y-Tuning achieves performance more than 96%of full fine-tuning on GLUE Benchmark with only 2%tunable parameters and much fewer training costs.
基金supported by the National Natural Science Foundation of China(52173055,51973028,and 21961132024)the Ministry of Science and Technology of People’s Republic of China(2021YFE0105100)+2 种基金the Science and Technology Commission of Shanghai Municipality(21YF1400700)the Fundamental Research Funds for the Central Universitiesthe DHU Distinguished Young Professor Program(LZA2020001)。
基金financially supported by the National Natural Science Foundation of China(No.52173055)the Natural Science Foundation of Shanghai(No.19ZR1401100)+1 种基金the Fundamental Research Funds for the Central UniversitiesDHU Distinguished Young Professor Program(No.LZA2020001)。
文摘NH_(3) plays an essential role in human life since it is an important raw material for fertilizers,plastics and rubbers production.As an NH_(3) synthesis technology under ambient conditions,electrocatalytic N_(2) reduction reaction(NRR)has great potential to replace the energy-intensive Haber-Bosch process.The key of electrocatalytic NRR is the exploration of efficient catalysts.Transition metal Mo is promising since it exists naturally in nitrogenase due to the unique Mo-N_(2) interaction;particularly in the form of 2D material such as MoSe_(2),the surface area is maximized for more active sites.However,the NRR performance of MoSe_(2) is still unsatisfactory because Mo is only exposed at the semi-open edge,and the electronegative Se-mantled surface area remains inaccessible to N_(2).Herein,we propose a simple and effective strategy to create high-concentration Se vacancies in MoSe_(2) through heteroatom doping induced lattice strain,which effectively enhances the Mo-N_(2) interaction on the surface area.In result,high NH_(3) yield(3.04×10^(–10)mol s^(–1)cm^(–2))and Faraday efficiency(21.61%)are attained at–0.45 V vs.RHE in 0.1 mol/L Na_(2)SO_(4).
文摘To the Editor:Acoustic neuroma is the most common tumor in the cerebellopontine angle(CPA)area.The surgical approaches used for acoustic neuroma include the labyrinth,middle cranial fossa,posterior sigmoid sinus,and posterior labyrinth routes.However,regardless of the approach used to expose the tumor in the internal auditory canal(IAC),the bone around the IAC must be abraded,which inevitably exposes the surrounding air cells to damage and increases the risk of cerebrospinal fluid(CSF)leak after surgery.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 21304053, 21274079 and 21546015) and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120002130012). Y. T. L. is grateful to the China Postdoctoral Science Foundation (No. 2015M580095).
文摘TiO2(B) is an attractive new anode candidate for lithium-ion batteries (LIBs) due to its unique and highly desirable properties, including high structural integrity, long cycle life, and low cost. However, despite these merits, its inherent slow lithium and electron transport kinetics hinder its practical application to LIBs. Here, we propose a novel, simple route towards multi-dimensionally ordered, multi-functionally integrated reduced graphene oxide (r-GO)@TiO2(B)@Mn304 yolk-membrane-shell superstructures in which r-GO nanosheets, TiO2(B) nanosheets, and Mn304 nanoparticles are hierarchically organized to achieve remarkable synergistic interactions. This hybridization design is fundamentally bilateral in nature, aiming to overcome the conductivity and capacity deficiencies of TiO2(B) simultaneously. The resulting r-GO@TiO2(B)@Mn304 yolk-membrane- shell superstructures have great potential as advanced anode materials for ultrafast lithium storage, delivering a strikingly high reversible capacity of 662 mA.h-g-1 at 500 mA-g^-1 after 500 charge-discharge cycles.
基金financial support from the National Natural Science Foundation of China(Nos.51633003 and 21774069)
文摘As an alloying type anode material, silicon is a promising alternative of graphitic carbon due to its high theoretical capacity and natural abundance. Developing an industrially viable silicon anode, however, is still a huge challenge because of several problems: First of all, the common process to synthesize a silicon anode is complicated, costly, and energy-intensive. Besides, the huge volume expansion, inevitable side reactions with the electrolyte, and low intrinsic conductivity of silicon are eventually responsible for the poor cyclability and unsatisfactory rate capability. Herein, we aim to address these issues by proposing synthesis of hollow Si@void@C yolk-shell microspheres from sand by low-temperature aluminothermic reduction, which energetically combines a cost-effective silicon source with an energy-efficient, highyield methodology. The hollow Si@void@C yolk-shell microspheres effectively accommodate the diffusion-induced stress by providing the hollow interior and the void space. Moreover, the carbon shell not only functions as an electrolyte-blocking layer to protect the silicon yolk from undesirable side reactions and SEI formation, but also acts as a conductive framework to reduce the resistance to electron and Li^+ ion transport. Benefiting from these synergistic effects, the hollow Si@void@C yolk-shell microspheres exhibit superior long-term cyclability and rate capability.
基金This work was financially supported by the Fundamental Research Funds for the Central Universities(No.2232019G-01)the National Natural Science Foundation of China(Nos.21961132024,51925302 and 51873029)+3 种基金the Natural Science Foundation of Shanghai(No.19ZR1401100)the Innovation Program of Shanghai Municipal Education Commission(No.2017-01-07-00-03-E00024)the Program of Shanghai Academic Research Leader(No.18XD1400200)the DHU Distinguished Young Professor Program(No.LZA2020001).
文摘The advancement of electrocatalytic N2 reduction reaction (NRR) toward ambient NH3 synthesis lies in the development of more affordable electrocatalysts than noble metals. Recently, various nanostructures of transition metal compounds have been proposed as effective electrocatalysts;however, they exist in the form of loose powders, which have to be immobilized on a matrix before serving as the electrode for electrolysis. The matrix, being it carbon paper, carbon cloth or metal foam, is electrocatalytically inactive, whose introduction inevitably raises the invalid weight while sacrificing the active sites of the electrode. Herein, we report on the fabrication of a flexible ZrO2 nanofibrous membrane as a novel, self-supported electrocatalyst. The heteroatom doping can not only endow the nanofibrous membrane with excellent flexibility, but also induce oxygen vacancies which are responsible for easier adsorption of N2 on the ZrO2 surface. To improve the electrocatalytic activity, a facile SILAR approach is employed to decorate it with CdS quantum dots (QDs), thereby tuning its Fermi level. To improve the conductivity, a g-C3N4 nanolayer is further deposited which is both conductive and active. The resulting hierarchically structured, self-supported electrocatalyst, consisting of g-C3N4 encapsulated ZrO2 nanofibrous membrane decorated with CdS QDs, integrates the merits of the three components, and exhibits a remarkable synergy toward NRR. Excellent NH3 yield of 6.32 × 10−10 mol·s−1cm−2 (−0.6 V vs. RHE) and Faradaic efficiency of 12.9% (−0.4 V vs. RHE) are attained in 0.1 M Na2SO4.
基金the National Natural Science Foundation of China(Nos.51633003 and 21774069)for financial support
文摘In this study,a simple and efficient way is demonstrated to create strong interfacial interaction between graphene oxide(GO)filler and poly(vinyl alcohol)(PVA)matrix through metal ion coordination.The coordination bonding provides efficient load transfer during the tensile process,and enhances the mechanical properties of the nanocomposites significantly.After being coordinated with Cu(Ⅱ)ions,GO/PVA composites show much higher Young’s moduli and yield stresses than pure PVA and noncoordinated GO/PVA.UV–vis and FTIR spectra are performed to confirm the successful coordination between GO and PVA.Ethylene diamine tetraacetic acid disodium salt(EDTA-2 Na)is used to confirm the important role of coordination in enhancing the composites.This research provides a new approach to manufacture polymer-matrix nanocomposites with significantly improved mechanical performances.
基金financially supported by the National Natural Science Foundation of China (Nos.52173055,21961132024 and 51925302)the Natural Science Foundation of Shanghai (No.19ZR1401100)+3 种基金the Innovation Program of Shanghai Municipal Education Commission (No.2017-01-07-00-03-E00024)the Fundamental Research Funds for the Central Universities (No.CUSF-DH-D-2019028)the DHU Distinguished Young Professor Program (No.LZA2020001)financial support from DFG (No.431073172)。
文摘Electrocatalysis plays an increasingly important role in converting atmospheric molecules(e.g.,N_(2),CO_(2) and H_(2)O)to value-added products(e.g.,NH_(3),C_(2)H_(4)and H_(2)).However,developing a simple strategy for preparing catalysts with high performance for the effective conversion of clean energy is still full of chal-lenges.Herein,we describe a straightforward,one-step reduction method to achieve the formation of Pt nanoparticles(NPs)and the vacancy engineering of TiO_(2-x)nanofibers(NFs)simultaneously,which can be accomplished in 5 min.Furthermore,a Pt/TiO_(2-x)nanofibrous aerogel(NA)with an ordered cellular archi-tecture is prepared through a directional freezing technology.The Pt/TiO_(2-x)NA with excellent mechanical properties can be made into a self-supporting electrode for electrocatalytic N_(2)reduction reaction(NRR),showing high NH_(3) yield rate(4.81×10^(-10)mol/s cm^(-2))and Faraday efficiency(14.9%)at-0.35 V vs.RHE.
基金Supported by the National Natural Science Foundation of China(52007122).
文摘Through the analysis of the circuit structure and electromagnetic interference(EMI)conduction path,the structure of the traditional harmonic filter is optimized so that it has the ability to suppress EMI.Using the structure of planar magnetic integration not only ensures the basic harmonic suppression ability of the harmonic filter,but also improves the EMI suppression effect.With a single-phase voltage source 500-W SiC inverter as the platform,the feasibility and effectiveness of the design scheme are experimentally verified.The results indicated that the planar magnetic integrated harmonic EMI filter satisfies the design requirements.Additionally,the proposed planar magnetic integration scheme can significantly reduce the volume and weight of the filter and increase the power density of the entire system.