Mechanical overloading and aging are two essential factors for osteoarthritis(OA)development.Mitochondria have been identified as a mechano-transducer situated between extracellular mechanical signals and chondrocyte ...Mechanical overloading and aging are two essential factors for osteoarthritis(OA)development.Mitochondria have been identified as a mechano-transducer situated between extracellular mechanical signals and chondrocyte biology,but their roles and the associated mechanisms in mechanical stress-associated chondrocyte senescence and OA have not been elucidated.展开更多
Tendon-bone interface injuries pose a significant challenge in tissue regeneration,necessitating innovative approaches.Hydrogels with integrated supportive features and controlled release of therapeutic agents have em...Tendon-bone interface injuries pose a significant challenge in tissue regeneration,necessitating innovative approaches.Hydrogels with integrated supportive features and controlled release of therapeutic agents have emerged as promising candidates for the treatment of such injuries.In this study,we aimed to develop a temperature-sensitive composite hydrogel capable of providing sustained release of magnesium ions(Mg^(2+)).We synthesized magnesium-Procyanidin coordinated metal polyphenol nanoparticles(Mg-PC)through a self-assembly process and integrated them into a two-component hydrogel.The hydrogel was composed of dopamine-modified hyaluronic acid(Dop-HA)and F127.To ensure controlled release and mitigate the“burst release”effect of Mg^(2+),we covalently crosslinked the Mg-PC nanoparticles through coordination bonds with the catechol moiety within the hydrogel.This crosslinking strategy extended the release window of Mg^(2+)concentrations for up to 56 days.The resulting hydrogel(Mg-PC@Dop-HA/F127)exhibited favorable properties,including injectability,thermosensitivity and shape adaptability,making it suitable for injection and adaptation to irregularly shaped supraspinatus implantation sites.Furthermore,the hydrogel sustained the release of Mg^(2+)and Procyanidins,which attracted mesenchymal stem and progenitor cells,alleviated inflammation,and promoted macrophage polarization towards the M2 phenotype.Additionally,it enhanced collagen synthesis and mineralization,facilitating the repair of the tendon-bone interface.By incorporating multilevel metal phenolic networks(MPN)to control ion release,these hybridized hydrogels can be customized for various biomedical applications.展开更多
One of the urgent and challenging topics in diversified sustainable energy conversion is the development of high-performance,low-cost,and well durable catalysts.Cu single-atom catalysts(SACs)have become promising cata...One of the urgent and challenging topics in diversified sustainable energy conversion is the development of high-performance,low-cost,and well durable catalysts.Cu single-atom catalysts(SACs)have become promising catalysts for diversified sustainable energy conversion due to their capability to maximize the utilization efficiency,acquire modulated electronic structure and optimized binding strength with intermediates.In this review,we have provided an interview of the recent progress achieved in the field of electrocatalysis,photocatalysis,and heterogeneous reaction based on Cu SACs.Started by this review,we have summarized some advanced synthetic strategies for the construction of Cu SACs.Subsequently,the performance-improving strategies are discussed in terms of the coordination environments of the reaction center,reaction mechanism and selectivity,based on free energy diagram and electron structure analysis.Finally,the remaining issues,challenges,and opportunities of Cu SACs are also provided,affording a perspective for future studies.This review not only offers us a deep understanding on the catalytic mechanism of Cu SACs for energy conversion,but also encourages more endeavors in prompting their practical application.展开更多
Rapid and efficient tendon fixation to a bone following trauma or in response to degenerative processes can be facilitated using a tendon anchoring device.Osteomimetic biomaterials,and in particular,bio-resorbable pol...Rapid and efficient tendon fixation to a bone following trauma or in response to degenerative processes can be facilitated using a tendon anchoring device.Osteomimetic biomaterials,and in particular,bio-resorbable polymer composites designed to match the mineral phase content of native bone,have been shown to exhibit osteoinductive and osteoconductive properties in vivo and have been used in bone fixation for the past 2 decades.In this study,a resorbable,bioactive,and mechanically robust citrate-based composite formulated from poly(octamethylene citrate)(POC)and hydroxyapatite(HA)(POC-HA)was investigated as a potential tendon-fixation biomaterial.In vitro analysis with human Mesenchymal Stem Cells(hMSCs)indicated that POC-HA composite materials supported cell adhesion,growth,and proliferation and increased calcium deposition,alkaline phosphatase production,the expression of osteogenic specific genes,and activation of canonical pathways leading to osteoinduction and osteoconduction.Further,in vivo evaluation of a POC-HA tendon fixation device in a sheep metaphyseal model indicates the regenerative and remodeling potential of this citrate-based composite material.Together,this study presents a comprehensive in vitro and in vivo analysis of the functional response to a citrate-derived composite tendon anchor and indicates that citrate-based HA composites offer improved mechanical and osteogenic properties relative to commonly used resorbable tendon anchor devices formulated from poly(L-co-D,l-lactic acid)and tricalcium phosphate PLDLA-TCP.展开更多
The revolutionary role of tissue adhesives in wound closure,tissue sealing,and bleeding control necessitates the development of multifunctional materials capable of effective and scarless healing.In contrast to the us...The revolutionary role of tissue adhesives in wound closure,tissue sealing,and bleeding control necessitates the development of multifunctional materials capable of effective and scarless healing.In contrast to the use of traditionally utilized toxic oxidative crosslinking initiators(exemplified by sodium periodate and silver nitrate),herein,the natural polyphenolic compound tannic acid(TA)was used to achieve near instantaneous(<25s),hydrogen bond mediated gelation of citrate-based mussel-inspired bioadhesives combining anti-oxidant,anti-inflammatory,and antimicrobial activities(3A-TCMBAs).The resulting materials were self-healing and possessed low swelling ratios(<60%)as well as considerable mechanical strength(up to~1.0 MPa),elasticity(elongation~2700%),and adhesion(up to 40 kPa).The 3A-TCMBAs showed strong in vitro and in vivo anti-oxidant ability,favorable cytocompatibility and cell migration,as well as photothermal antimicrobial activity against both Staphylococcus aureus and Escherichia coli(>90%bacterial death upon near-infrared(NIR)irradiation).In vivo evaluation in both an infected full-thickness skin wound model and a rat skin incision model demonstrated that 3A-TCMBAs+NIR treatment could promote wound closure and collagen deposition and improve the collagen Ⅰ/Ⅲ ratio on wound sites while simultaneously inhibiting the expression of pro-inflammatory cytokines.Further,phased angiogenesis was observed via promotion in the early wound closure phases followed by inhibition and triggering of degradation&remodeling of the extracellular matrix(ECM)in the late stage(supported by phased CD31(platelet endothelial cell adhesion molecule-1)PDGF(platelet-derived growth factor)and VEGF(vascular endothelial growth factor)expression as well as elevated matrix metalloprotein-9(MMP-9)expression on day 21),resulting in scarless wound healing.The significant convergence of material and bioactive properties elucidated above warrant further exploration of 3A-TCMBAs as a significant,new class of bioadhesive.展开更多
Alkylation of benzene with carbon dioxide and hydrogen to produce toluene and xylene could increase the added-value of surplus benzene as well as relieve environmental problems like green-house effect.In this work,the...Alkylation of benzene with carbon dioxide and hydrogen to produce toluene and xylene could increase the added-value of surplus benzene as well as relieve environmental problems like green-house effect.In this work,the alkylation benzene with carbon dioxide and hydrogen reaction was proceeded by using the mixture of zinc-zirconium oxide and HZSM-5 as bifunctional catalyst.The equivalent of Zn/Zr=1 displays the best catalytic performance at 425℃ and 3.0 MPa,and benzene conversion reaches 42.9%with a selectivity of 90%towards toluene and xylene.Moreover,the carbon dioxide conversion achieves 23.3%and the carbon monoxide selectivity is lower than 35%,indicating that more than 50%carbon dioxide has been effectively incorporated into the target product,which is the best result as far as we know.Combined with characterizations,it indicated that the Zn and Zr formed a solid solution under specific conditions(Zn/Zr=1).The as-formed solid solution not only possesses a high surface area but also provides a large amount of oxygen vacancies.Additionally,the bifunctional catalyst has excellent stabilities that could keep operating without deactivation for at least 80 h.This work provides promising industrial applications for the upgrading of aromatics.展开更多
Ganoderma lucidum is a mushroom widely used for its edible and medicinal properties.Primary bioactive constituents of G.lucidum are ganoderic triterpenoids(GTs),which exhibit important pharmacological activity.Abscisi...Ganoderma lucidum is a mushroom widely used for its edible and medicinal properties.Primary bioactive constituents of G.lucidum are ganoderic triterpenoids(GTs),which exhibit important pharmacological activity.Abscisic acid(ABA),a plant hormone,is associated with plant growth,development,and stress responses.ABA can also affect the growth,metabolism,and physiological activities of different fungi and participates in the regulation of the tetracyclic triterpenes of some plants.Our findings indicated that ABA treatment promoted GT accumulation by regulating the gene expression levels(squalene synthase(sqs),3-hydroxy-3-methylglutaryl-CoA reductase(hmgr),and lanosterol synthase(ls)),and also activated cytosolic Ca2 channels.Furthermore,under ABA mediation.展开更多
基金supported by grants from Natural Science Foundation of China grant No 82172491 (CN)National Natural Science Funds for Excellent Young Scholar No 82322044 (CN)+2 种基金National Key Research and Development Program of China (2022YFC3601902)Youth Talent Support Programme of Guangdong Provincial Association for Science and Technology (SKXRC202308)State-funded postdoctoral researcher program No GZC20231062 (CN)。
文摘Mechanical overloading and aging are two essential factors for osteoarthritis(OA)development.Mitochondria have been identified as a mechano-transducer situated between extracellular mechanical signals and chondrocyte biology,but their roles and the associated mechanisms in mechanical stress-associated chondrocyte senescence and OA have not been elucidated.
基金supported by the National Natural Science Foundation of China[grant numbers:82302639,81974327,81974328 and 82372358]National Students’Platform for Innovation and Entrepreneurship Training Program of China[grant number:No.202212121004]+1 种基金Natural Science Funds for Distinguished Young Scholar of Guangdong province[grant number:2022B1515020044]the Natural Science Foundation of Guangdong Province[grant number:2022A1515011101].
文摘Tendon-bone interface injuries pose a significant challenge in tissue regeneration,necessitating innovative approaches.Hydrogels with integrated supportive features and controlled release of therapeutic agents have emerged as promising candidates for the treatment of such injuries.In this study,we aimed to develop a temperature-sensitive composite hydrogel capable of providing sustained release of magnesium ions(Mg^(2+)).We synthesized magnesium-Procyanidin coordinated metal polyphenol nanoparticles(Mg-PC)through a self-assembly process and integrated them into a two-component hydrogel.The hydrogel was composed of dopamine-modified hyaluronic acid(Dop-HA)and F127.To ensure controlled release and mitigate the“burst release”effect of Mg^(2+),we covalently crosslinked the Mg-PC nanoparticles through coordination bonds with the catechol moiety within the hydrogel.This crosslinking strategy extended the release window of Mg^(2+)concentrations for up to 56 days.The resulting hydrogel(Mg-PC@Dop-HA/F127)exhibited favorable properties,including injectability,thermosensitivity and shape adaptability,making it suitable for injection and adaptation to irregularly shaped supraspinatus implantation sites.Furthermore,the hydrogel sustained the release of Mg^(2+)and Procyanidins,which attracted mesenchymal stem and progenitor cells,alleviated inflammation,and promoted macrophage polarization towards the M2 phenotype.Additionally,it enhanced collagen synthesis and mineralization,facilitating the repair of the tendon-bone interface.By incorporating multilevel metal phenolic networks(MPN)to control ion release,these hybridized hydrogels can be customized for various biomedical applications.
基金financially supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_2795)the Basic Science(Natural Science)Research Project of Colleges and Universities of Jiangsu Province(No.21KJB540001)Changzhou Sci&Tech Program(Nos.CJ20220180,CJ20210042),China.
文摘One of the urgent and challenging topics in diversified sustainable energy conversion is the development of high-performance,low-cost,and well durable catalysts.Cu single-atom catalysts(SACs)have become promising catalysts for diversified sustainable energy conversion due to their capability to maximize the utilization efficiency,acquire modulated electronic structure and optimized binding strength with intermediates.In this review,we have provided an interview of the recent progress achieved in the field of electrocatalysis,photocatalysis,and heterogeneous reaction based on Cu SACs.Started by this review,we have summarized some advanced synthetic strategies for the construction of Cu SACs.Subsequently,the performance-improving strategies are discussed in terms of the coordination environments of the reaction center,reaction mechanism and selectivity,based on free energy diagram and electron structure analysis.Finally,the remaining issues,challenges,and opportunities of Cu SACs are also provided,affording a perspective for future studies.This review not only offers us a deep understanding on the catalytic mechanism of Cu SACs for energy conversion,but also encourages more endeavors in prompting their practical application.
基金Science Foundation Ireland(SFI)and the European Regional Development Fund(Grant No.13/RC/2073).
文摘Rapid and efficient tendon fixation to a bone following trauma or in response to degenerative processes can be facilitated using a tendon anchoring device.Osteomimetic biomaterials,and in particular,bio-resorbable polymer composites designed to match the mineral phase content of native bone,have been shown to exhibit osteoinductive and osteoconductive properties in vivo and have been used in bone fixation for the past 2 decades.In this study,a resorbable,bioactive,and mechanically robust citrate-based composite formulated from poly(octamethylene citrate)(POC)and hydroxyapatite(HA)(POC-HA)was investigated as a potential tendon-fixation biomaterial.In vitro analysis with human Mesenchymal Stem Cells(hMSCs)indicated that POC-HA composite materials supported cell adhesion,growth,and proliferation and increased calcium deposition,alkaline phosphatase production,the expression of osteogenic specific genes,and activation of canonical pathways leading to osteoinduction and osteoconduction.Further,in vivo evaluation of a POC-HA tendon fixation device in a sheep metaphyseal model indicates the regenerative and remodeling potential of this citrate-based composite material.Together,this study presents a comprehensive in vitro and in vivo analysis of the functional response to a citrate-derived composite tendon anchor and indicates that citrate-based HA composites offer improved mechanical and osteogenic properties relative to commonly used resorbable tendon anchor devices formulated from poly(L-co-D,l-lactic acid)and tricalcium phosphate PLDLA-TCP.
基金funded by the National Natural Science Foundation of China(NSFC,Grant No.U21A2099,82102545)the Chinese Postdoctoral Science Foundation(Grant No.2021M701627)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515011982,2020A1515110062).
文摘The revolutionary role of tissue adhesives in wound closure,tissue sealing,and bleeding control necessitates the development of multifunctional materials capable of effective and scarless healing.In contrast to the use of traditionally utilized toxic oxidative crosslinking initiators(exemplified by sodium periodate and silver nitrate),herein,the natural polyphenolic compound tannic acid(TA)was used to achieve near instantaneous(<25s),hydrogen bond mediated gelation of citrate-based mussel-inspired bioadhesives combining anti-oxidant,anti-inflammatory,and antimicrobial activities(3A-TCMBAs).The resulting materials were self-healing and possessed low swelling ratios(<60%)as well as considerable mechanical strength(up to~1.0 MPa),elasticity(elongation~2700%),and adhesion(up to 40 kPa).The 3A-TCMBAs showed strong in vitro and in vivo anti-oxidant ability,favorable cytocompatibility and cell migration,as well as photothermal antimicrobial activity against both Staphylococcus aureus and Escherichia coli(>90%bacterial death upon near-infrared(NIR)irradiation).In vivo evaluation in both an infected full-thickness skin wound model and a rat skin incision model demonstrated that 3A-TCMBAs+NIR treatment could promote wound closure and collagen deposition and improve the collagen Ⅰ/Ⅲ ratio on wound sites while simultaneously inhibiting the expression of pro-inflammatory cytokines.Further,phased angiogenesis was observed via promotion in the early wound closure phases followed by inhibition and triggering of degradation&remodeling of the extracellular matrix(ECM)in the late stage(supported by phased CD31(platelet endothelial cell adhesion molecule-1)PDGF(platelet-derived growth factor)and VEGF(vascular endothelial growth factor)expression as well as elevated matrix metalloprotein-9(MMP-9)expression on day 21),resulting in scarless wound healing.The significant convergence of material and bioactive properties elucidated above warrant further exploration of 3A-TCMBAs as a significant,new class of bioadhesive.
基金sponsored financially by the National Natural Science Foundation of China (Grant No.21776076)the Fundamental Research Funds for the Central Universities (Grant No.JKA01211710).
文摘Alkylation of benzene with carbon dioxide and hydrogen to produce toluene and xylene could increase the added-value of surplus benzene as well as relieve environmental problems like green-house effect.In this work,the alkylation benzene with carbon dioxide and hydrogen reaction was proceeded by using the mixture of zinc-zirconium oxide and HZSM-5 as bifunctional catalyst.The equivalent of Zn/Zr=1 displays the best catalytic performance at 425℃ and 3.0 MPa,and benzene conversion reaches 42.9%with a selectivity of 90%towards toluene and xylene.Moreover,the carbon dioxide conversion achieves 23.3%and the carbon monoxide selectivity is lower than 35%,indicating that more than 50%carbon dioxide has been effectively incorporated into the target product,which is the best result as far as we know.Combined with characterizations,it indicated that the Zn and Zr formed a solid solution under specific conditions(Zn/Zr=1).The as-formed solid solution not only possesses a high surface area but also provides a large amount of oxygen vacancies.Additionally,the bifunctional catalyst has excellent stabilities that could keep operating without deactivation for at least 80 h.This work provides promising industrial applications for the upgrading of aromatics.
基金supported by the Applied Basic Research Project of Shanxi Province(Nos.202203021221135,201901D 211402,and 202103021223255),China.
文摘Ganoderma lucidum is a mushroom widely used for its edible and medicinal properties.Primary bioactive constituents of G.lucidum are ganoderic triterpenoids(GTs),which exhibit important pharmacological activity.Abscisic acid(ABA),a plant hormone,is associated with plant growth,development,and stress responses.ABA can also affect the growth,metabolism,and physiological activities of different fungi and participates in the regulation of the tetracyclic triterpenes of some plants.Our findings indicated that ABA treatment promoted GT accumulation by regulating the gene expression levels(squalene synthase(sqs),3-hydroxy-3-methylglutaryl-CoA reductase(hmgr),and lanosterol synthase(ls)),and also activated cytosolic Ca2 channels.Furthermore,under ABA mediation.