Macrophyte habitats exhibit remarkable heterogeneity,encompassing the spatial variation of abiotic and biotic components such as changes in water conditions and weather as well as anthropogenic stressors.Environmental...Macrophyte habitats exhibit remarkable heterogeneity,encompassing the spatial variation of abiotic and biotic components such as changes in water conditions and weather as well as anthropogenic stressors.Environmental factors are thought to be important drivers shaping the genetic and epigenetic variation of aquatic plants.However,the links among genetic diversity,epigenetic variation,and environmental variables remain largely unclear,especially for clonal aquatic plants.Here,we performed population genetic and epigenetic analyses in conjunction with habitat discrimination to elucidate the environmental factors driving intraspecies genetic and epigenetic variation in hornwort(Ceratophyllum demersum)in a subtropical lake.Environmental factors were highly correlated with the genetic and epigenetic variation of C.demersum,with temperature being a key driver of the genetic variation.Lower temperature was detected to be correlated with greater genetic and epigenetic variation.Genetic and epigenetic variation were positively driven by water temperature,but were negatively affected by ambient air temperature.These findings indicate that the genetic and epigenetic variation of this clonal aquatic herb is not related to the geographic feature but is instead driven by environmental conditions,and demonstrate the effects of temperature on local genetic and epigenetic variation in aquatic systems.展开更多
Alzheimer’s disease is a neurodegenerative disease induced by multiple interconnected mechanisms.Peptide drug candidates with multi-modal efficacy generated from fusion strategy are suitable for addressing multi-face...Alzheimer’s disease is a neurodegenerative disease induced by multiple interconnected mechanisms.Peptide drug candidates with multi-modal efficacy generated from fusion strategy are suitable for addressing multi-facet pathology.However,clinical translation of peptide drugs is greatly hampered by their low permeability into brain.Herein,a hybrid peptide HNSS is generated by merging two therapeutic peptides(SS31 and S-14 G Humanin(HNG)),using a different approach from the classical shuttle-therapeutic peptide conjugate design.HNSS demonstrated increased bio-permeability,with a 2-fold improvement in brain distribution over HNG,thanks to its structure mimicking the design of signal peptide-derived cell-penetrating peptides.HNSS efficiently alleviated mitochondrial dysfunction through the combined effects of mitochondrial targeting,ROS scavenging and p-STAT3 activation.Meanwhile,HNSS with increased Aβaffinity greatly inhibited Aβoligomerization/fibrillation,and interrupted Aβinteraction with neuron/microglia by reducing neuronal mitochondrial Aβdeposition and promoting microglial phagocytosis of Aβ.In3×Tg-AD transgenic mice,HNSS treatment efficiently inhibited brain neuron loss and improved the cognitive performance.This work validates the rational fusion design-based strategy for bio-permeability improvement and efficacy amplification,providing a paradigm for developing therapeutic peptide candidates against neurodegenerative disease.展开更多
Intraneuronal dysproteostasis and extraneuronal microenvironmental abnormalities in Alzheimer’s disease(AD)collectively culminate in neuronal deterioration.In the context of AD,autophagy dysfunction,a multi-link obst...Intraneuronal dysproteostasis and extraneuronal microenvironmental abnormalities in Alzheimer’s disease(AD)collectively culminate in neuronal deterioration.In the context of AD,autophagy dysfunction,a multi-link obstacle involving autophagy downregulation and lysosome defects in neurons/microglia is highly implicated in intra/extraneuronal pathological processes.Therefore,multidimensional autophagy regulation strategies co-manipulating“autophagy induction”and“lysosome degradation”in dual targets(neuron and microglia)are more reliable for AD treatment.Accordingly,we designed an RP-1 peptide-modified reactive oxygen species(ROS)-responsive micelles(RT-NM)loading rapamycin or gypenoside XVII.Guided by RP-1 peptide,the ligand of receptor for advanced glycation end products(RAGE),RT-NM efficiently targeted neurons and microglia in AD-affected region.This nanocombination therapy activated the whole autophagy-lysosome pathway by autophagy induction(rapamycin)and lysosome improvement(gypenoside XVII),thus enhancing autophagic degradation of neurotoxic aggregates and inflammasomes,and promoting Aβ phagocytosis.Resultantly,it decreased aberrant protein burden,alleviated neuroinflammation,and eventually ameliorated memory defects in 3×Tg-AD transgenic mice.Our research developed a multidimensional autophagy nano-regulator to boost the efficacy of autophagy-centered AD therapy.展开更多
Compromised autophagy and defective lysosomal clearance significantly contribute to impaired neuronal proteostasis,which represents a hallmark of Alzheimer’s disease(AD)and other age-related neurodegenerative disorde...Compromised autophagy and defective lysosomal clearance significantly contribute to impaired neuronal proteostasis,which represents a hallmark of Alzheimer’s disease(AD)and other age-related neurodegenerative disorders.Growing evidence has implicated that modulating autophagic flux,instead of inducing autophagosome formation alone,would be more reliable to rescue neuronal proteostasis.Concurrently,selectively enhancing drug concentrations in the leision areas,instead of the whole brain,will maximize therapeutic efficacy while reduing non-selective autophagy induction.Herein,we design a ROS-responsive targeted micelle system(TT-NM/Rapa)to enhance the delivery efficiency of rapamycin to neurons in AD lesions guided by the fusion peptide TPL,and facilitate its intracellular release via ROS-mediated disassembly of micelles,thereby maximizing autophagic flux modulating efficacy of rapamycin in neurons.Consequently,it promotes the efficient clearance of intracellular neurotoxic proteins,β-amyloid and hyperphosphorylated tau proteins,and ameliorates memory defects and neuronal damage in 3×Tg-AD transgenic mice.Our studies demonstrate a promising strategy to restore autophagic flux and improve neuronal proteostasis by rationally-engineered nano-systems for delaying the progression of AD.展开更多
Somatic activating mutations in the epidermal growth factor receptor(EGFR)are one of the most common oncogenic drivers in cancers such as non-small-cell lung cancer(NSCLC),metastatic colorectal cancer,glioblastoma,hea...Somatic activating mutations in the epidermal growth factor receptor(EGFR)are one of the most common oncogenic drivers in cancers such as non-small-cell lung cancer(NSCLC),metastatic colorectal cancer,glioblastoma,head and neck cancer,pancreatic cancer,and breast cancer.Molecular-targeted agents against EGFR signaling pathways have shown robust clinical efficacy,but patients inevitably experience acquired resistance.Although immune checkpoint inhibitors(ICIs)targeting PD-1/PD-L1 have exhibited durable anti-tumor responses in a subset of patients across multiple cancer types,their efficacy is limited in cancers harboring activating gene alterations of EGFR.Increasing studies have demonstrated that upregulation of new B7/CD28 family members such as B7-H3,B7x and HHLA2,is associated with EGFR signaling and may contribute to resistance to EGFR-targeted therapies by creating an immunosuppressive tumor microenvironment(TME).In this review,we discuss the regulatory effect of EGFR signaling on the PD-1/PD-L1 pathway and new B7/CD28 family member pathways.Understanding these interactions may inform combination therapeutic strategies and potentially overcome the current challenge of resistance to EGFR-targeted therapies.We also summarize clinical data of anti-PD-1/PD-L1 therapies in EGFR-mutated cancers,as well as ongoing clinical trials of combination of EGFR-targeted therapies and anti-PD-1/PD-L1 immunotherapies.展开更多
On-resin peptide modification renders an easy-to-operate method that combines solid-phase peptide synthesis efficiency and avoids tedious purification procedures. Herein, we report the transition-metal-free and redox-...On-resin peptide modification renders an easy-to-operate method that combines solid-phase peptide synthesis efficiency and avoids tedious purification procedures. Herein, we report the transition-metal-free and redox-neutral approach for solid-phase Met diversification with substrate diversity, which could be applied to synthesize cyclic peptides of different sizes.展开更多
In structural health monitoring(SHM),the measurement is point-wise but structures are continuous.Thus,input estimation has become a hot research subject with which the full-field structural response can be calculated ...In structural health monitoring(SHM),the measurement is point-wise but structures are continuous.Thus,input estimation has become a hot research subject with which the full-field structural response can be calculated with a finite element model(FEM).This paper proposes a framework based on the dynamic stiffness theory,to estimate harmonic input,reconstruct responses,and to localize damages from seriously deficient measurements.To begin,Fourier transform converts the dynamic equilibrium equation to an equivalent static one in the frequency domain,which is underdetermined since the dimension of measurement vector is far less than the FEM-node number.The principal component analysis has been adopted to“compress”the under-determined equation,and formed an over-determined equation to estimate the unknown input.Then,inverse Fourier transform converts the estimated input in the frequency domain to the time domain.Applying this to the FEM can reconstruct the target responses.If a structure is damaged,the estimated nodal force can localize the damage.To improve the damage-detection accuracy,a multi-measurement-based indicator has been proposed.Numerical simulations have validated that the proposed framework can capably estimate input and reconstruct multi-types of full-field responses,and the damage indicator can localize minor damages even with the existence of noise.展开更多
基金supported by Liangzi Lake reservesupported by the International Partnership Program of Chinese Academy of Sciences [Grant number, 152342KYSB20200021]+1 种基金the National Key R and D Program of China [Grant numbers, 2020YFD0900305, 2018YFD0900801]National Natural Science Foundation of China [Grant numbers, 32001107, 32201285, 32101254]
文摘Macrophyte habitats exhibit remarkable heterogeneity,encompassing the spatial variation of abiotic and biotic components such as changes in water conditions and weather as well as anthropogenic stressors.Environmental factors are thought to be important drivers shaping the genetic and epigenetic variation of aquatic plants.However,the links among genetic diversity,epigenetic variation,and environmental variables remain largely unclear,especially for clonal aquatic plants.Here,we performed population genetic and epigenetic analyses in conjunction with habitat discrimination to elucidate the environmental factors driving intraspecies genetic and epigenetic variation in hornwort(Ceratophyllum demersum)in a subtropical lake.Environmental factors were highly correlated with the genetic and epigenetic variation of C.demersum,with temperature being a key driver of the genetic variation.Lower temperature was detected to be correlated with greater genetic and epigenetic variation.Genetic and epigenetic variation were positively driven by water temperature,but were negatively affected by ambient air temperature.These findings indicate that the genetic and epigenetic variation of this clonal aquatic herb is not related to the geographic feature but is instead driven by environmental conditions,and demonstrate the effects of temperature on local genetic and epigenetic variation in aquatic systems.
基金supported by National Natural Science Foundation of China(82273868 and 82073780)Shanghai Municipal Natural Science Foundation(19ZR1406200).
文摘Alzheimer’s disease is a neurodegenerative disease induced by multiple interconnected mechanisms.Peptide drug candidates with multi-modal efficacy generated from fusion strategy are suitable for addressing multi-facet pathology.However,clinical translation of peptide drugs is greatly hampered by their low permeability into brain.Herein,a hybrid peptide HNSS is generated by merging two therapeutic peptides(SS31 and S-14 G Humanin(HNG)),using a different approach from the classical shuttle-therapeutic peptide conjugate design.HNSS demonstrated increased bio-permeability,with a 2-fold improvement in brain distribution over HNG,thanks to its structure mimicking the design of signal peptide-derived cell-penetrating peptides.HNSS efficiently alleviated mitochondrial dysfunction through the combined effects of mitochondrial targeting,ROS scavenging and p-STAT3 activation.Meanwhile,HNSS with increased Aβaffinity greatly inhibited Aβoligomerization/fibrillation,and interrupted Aβinteraction with neuron/microglia by reducing neuronal mitochondrial Aβdeposition and promoting microglial phagocytosis of Aβ.In3×Tg-AD transgenic mice,HNSS treatment efficiently inhibited brain neuron loss and improved the cognitive performance.This work validates the rational fusion design-based strategy for bio-permeability improvement and efficacy amplification,providing a paradigm for developing therapeutic peptide candidates against neurodegenerative disease.
基金supported by National Natural Science Foundation of China(Nos.82073780 and 82273868,China)Shanghai Municipal Natural Science Foundation(No.19ZR1406200,China)。
文摘Intraneuronal dysproteostasis and extraneuronal microenvironmental abnormalities in Alzheimer’s disease(AD)collectively culminate in neuronal deterioration.In the context of AD,autophagy dysfunction,a multi-link obstacle involving autophagy downregulation and lysosome defects in neurons/microglia is highly implicated in intra/extraneuronal pathological processes.Therefore,multidimensional autophagy regulation strategies co-manipulating“autophagy induction”and“lysosome degradation”in dual targets(neuron and microglia)are more reliable for AD treatment.Accordingly,we designed an RP-1 peptide-modified reactive oxygen species(ROS)-responsive micelles(RT-NM)loading rapamycin or gypenoside XVII.Guided by RP-1 peptide,the ligand of receptor for advanced glycation end products(RAGE),RT-NM efficiently targeted neurons and microglia in AD-affected region.This nanocombination therapy activated the whole autophagy-lysosome pathway by autophagy induction(rapamycin)and lysosome improvement(gypenoside XVII),thus enhancing autophagic degradation of neurotoxic aggregates and inflammasomes,and promoting Aβ phagocytosis.Resultantly,it decreased aberrant protein burden,alleviated neuroinflammation,and eventually ameliorated memory defects in 3×Tg-AD transgenic mice.Our research developed a multidimensional autophagy nano-regulator to boost the efficacy of autophagy-centered AD therapy.
基金supported by National Natural Science Foundation of China(No.82073780 and 81690263)Shanghai Municipal Natural Science Foundation(No.19ZR140620).
文摘Compromised autophagy and defective lysosomal clearance significantly contribute to impaired neuronal proteostasis,which represents a hallmark of Alzheimer’s disease(AD)and other age-related neurodegenerative disorders.Growing evidence has implicated that modulating autophagic flux,instead of inducing autophagosome formation alone,would be more reliable to rescue neuronal proteostasis.Concurrently,selectively enhancing drug concentrations in the leision areas,instead of the whole brain,will maximize therapeutic efficacy while reduing non-selective autophagy induction.Herein,we design a ROS-responsive targeted micelle system(TT-NM/Rapa)to enhance the delivery efficiency of rapamycin to neurons in AD lesions guided by the fusion peptide TPL,and facilitate its intracellular release via ROS-mediated disassembly of micelles,thereby maximizing autophagic flux modulating efficacy of rapamycin in neurons.Consequently,it promotes the efficient clearance of intracellular neurotoxic proteins,β-amyloid and hyperphosphorylated tau proteins,and ameliorates memory defects and neuronal damage in 3×Tg-AD transgenic mice.Our studies demonstrate a promising strategy to restore autophagic flux and improve neuronal proteostasis by rationally-engineered nano-systems for delaying the progression of AD.
基金supported by NIH R01CA175495 and R01DK100525,Department of Defense BC190403,Irma T.Hirschl/Monique Weill-Caulier Trust,and Cancer Research Institute.
文摘Somatic activating mutations in the epidermal growth factor receptor(EGFR)are one of the most common oncogenic drivers in cancers such as non-small-cell lung cancer(NSCLC),metastatic colorectal cancer,glioblastoma,head and neck cancer,pancreatic cancer,and breast cancer.Molecular-targeted agents against EGFR signaling pathways have shown robust clinical efficacy,but patients inevitably experience acquired resistance.Although immune checkpoint inhibitors(ICIs)targeting PD-1/PD-L1 have exhibited durable anti-tumor responses in a subset of patients across multiple cancer types,their efficacy is limited in cancers harboring activating gene alterations of EGFR.Increasing studies have demonstrated that upregulation of new B7/CD28 family members such as B7-H3,B7x and HHLA2,is associated with EGFR signaling and may contribute to resistance to EGFR-targeted therapies by creating an immunosuppressive tumor microenvironment(TME).In this review,we discuss the regulatory effect of EGFR signaling on the PD-1/PD-L1 pathway and new B7/CD28 family member pathways.Understanding these interactions may inform combination therapeutic strategies and potentially overcome the current challenge of resistance to EGFR-targeted therapies.We also summarize clinical data of anti-PD-1/PD-L1 therapies in EGFR-mutated cancers,as well as ongoing clinical trials of combination of EGFR-targeted therapies and anti-PD-1/PD-L1 immunotherapies.
基金financial supported by the National Natural Science Foundation of China (No. 22077144)Guangdong Natural Science Funds for Distinguished Young Scholar (No.2018B030306017)+1 种基金Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery (No. 2019B030301005)Key Research and Development Program of Guangdong Province (No.2020B1111110003)。
文摘On-resin peptide modification renders an easy-to-operate method that combines solid-phase peptide synthesis efficiency and avoids tedious purification procedures. Herein, we report the transition-metal-free and redox-neutral approach for solid-phase Met diversification with substrate diversity, which could be applied to synthesize cyclic peptides of different sizes.
基金support for the work reported in this paper from the National Natural Science Foundation of China(Grant No.51878482)the Hong Kong(China)Scholars Program(No.XJ2021036)and State Key Laboratory of Disaster Reduction in Civil Engineering,Tongji University(No.SLDRCE15-A-02).
文摘In structural health monitoring(SHM),the measurement is point-wise but structures are continuous.Thus,input estimation has become a hot research subject with which the full-field structural response can be calculated with a finite element model(FEM).This paper proposes a framework based on the dynamic stiffness theory,to estimate harmonic input,reconstruct responses,and to localize damages from seriously deficient measurements.To begin,Fourier transform converts the dynamic equilibrium equation to an equivalent static one in the frequency domain,which is underdetermined since the dimension of measurement vector is far less than the FEM-node number.The principal component analysis has been adopted to“compress”the under-determined equation,and formed an over-determined equation to estimate the unknown input.Then,inverse Fourier transform converts the estimated input in the frequency domain to the time domain.Applying this to the FEM can reconstruct the target responses.If a structure is damaged,the estimated nodal force can localize the damage.To improve the damage-detection accuracy,a multi-measurement-based indicator has been proposed.Numerical simulations have validated that the proposed framework can capably estimate input and reconstruct multi-types of full-field responses,and the damage indicator can localize minor damages even with the existence of noise.