To the Editor:Introduction of conventional synthetic disease-modifying antirheumatic drugs(csDMARDs)has been highly efficacious in reducing the signs and symptoms of rheumatoid arthritis(RA)and in delaying or preventi...To the Editor:Introduction of conventional synthetic disease-modifying antirheumatic drugs(csDMARDs)has been highly efficacious in reducing the signs and symptoms of rheumatoid arthritis(RA)and in delaying or preventing structural joint damage.Furthermore,the development and clinical use of biological DMARDs(bDMARDs)and targeted synthetic DMARDs(tsDMARDs)have dramatically altered the prognosis of patients with RA,particularly when they are combined with a treat-to-target regimen(T2T).[1]Consequently,over the last two decades,the rates of total hip arthroplasty(THA)and total knee arthroplasty(TKA)remained stable or even decreased in these special patient populations.Nevertheless,compared to patients with osteoarthritis,patients with RA have a higher risk of having worse functional outcomes and higher rates of complications after arthroplasty.This may be attributed to the complexity of the rheumatic disease process,including high disease activity,comorbidities,and immunosuppressive medications.[2]A key to making perioperative medication management decisions is to balance the risk of periprosthetic infection with the risk of a disease flare.展开更多
Tissue engineering provides a promising avenue for treating cartilage defects.However,great challenges remain in the development of structurally and functionally optimized scaffolds for cartilage repair and regenerati...Tissue engineering provides a promising avenue for treating cartilage defects.However,great challenges remain in the development of structurally and functionally optimized scaffolds for cartilage repair and regeneration.In this study,decellularized cartilage extracellular matrix(ECM)and waterborne polyurethane(WPU)were employed to construct WPU and WPU-ECM scaffolds by water-based 3D printing using low-temperature deposition manufacturing(LDM)system,which combines rapid deposition manufacturing with phase separation techniques.The scaffolds successfully achieved hierarchical macro-microporous structures.After adding ECM,WPU scaffolds were markedly optimized in terms of porosity,hydrophilia and bioactive components.Moreover,the optimized WPU-ECM scaffolds were found to be more suitable for cell distribution,adhesion,and proliferation than the WPU scaffolds.Most importantly,the WPU-ECM scaffold could facilitate the production of glycosaminoglycan(GAG)and collagen and the upregulation of cartilage-specific genes.These results indicated that the WPU-ECM scaffold with hierarchical macro-microporous structures could recreate a favorable microenvironment for cell adhesion,proliferation,differentiation,and ECM production.In vivo studies further revealed that the hierarchical macro-microporous WPU-ECM scaffold combined with the microfracture procedure successfully regenerated hyaline cartilage in a rabbit model.Six months after implantation,the repaired cartilage showed a similar histological structure and mechanical performance to that of normal cartilage.In conclusion,the hierarchical macro-microporous WPU-ECM scaffold may be a promising candidate for cartilage tissue engineering applications in the future.展开更多
We disclosed the interiorly driven macroscopic Brownian motion behavior of self-powered liquid metal motors. Such tiny motors in millimeter scale move randomly at a velocity magnitude of centimeters per second in aque...We disclosed the interiorly driven macroscopic Brownian motion behavior of self-powered liquid metal motors. Such tiny motors in millimeter scale move randomly at a velocity magnitude of centimeters per second in aqueous alkaline solution, well resembling the classical Brownian motion. However, unlike the existing phenomena, where the particle motions were caused by collisions from the surrounding molecules, the current random liquid metal motions are internally enabled and self-powered, along with the colliding among neighboring motors, the substrate and the surrounding electrolyte molecules. Through uniformly dissolving only 1% (mass percentage) A1 into GaInl0, many tiny motors can be quickly fabricated and activated to take the Brownian-like random motions. Further, we introduced an experimental approach of using optical image contrast, which works just like the Wilson cloud chamber, to distinctively indicate the motor trajectory resulted from the generated hydrogen gas stream. A series of unusual complicated multi-phase fluid mechanics phenomena were observed. It was also identified that the main driving factor of the motors comes from the H2 bubbles generated at the bottom of these tiny motors, which is different from the large size self-fueled liquid metal machine. Several typical mechanisms for such unconventional Brownian-like motion phenomena were preliminarily interpreted.展开更多
Protrusio acetabuli(PA)is_a complication of a wide spectrum_of pathological disorders involving the hip joint,[1] The underlying.causes can be infammatory[2,3] traumatic,genetic,metabolic,infectious,and idiopathic.Inf...Protrusio acetabuli(PA)is_a complication of a wide spectrum_of pathological disorders involving the hip joint,[1] The underlying.causes can be infammatory[2,3] traumatic,genetic,metabolic,infectious,and idiopathic.Inflammatory causes lead todestruction and weakening of the bone surrounding the hip with resultant migration along the joint-reaction vector.展开更多
A liquid metal magnetohydrodynamics generation system (LMMGS) was proposed and demonstrated in this paper for collecting parasitic power in shoe while walking. Unlike the conventional shoe-mounted human power harves...A liquid metal magnetohydrodynamics generation system (LMMGS) was proposed and demonstrated in this paper for collecting parasitic power in shoe while walking. Unlike the conventional shoe-mounted human power harvesters that use solid coil and gear mechanism, the proposed system employs liquid metal (Ga62In25Sn13) as energy carrier, where no moving part is requested in magnetohydrodynamics generators (MHGs). While walk- ing with the LMMGS, the foot alternately presses the two liquid metal pumps (LMPs) which are respectively placed in the front and rear of the sole. As a result, the liquid metal in the LMPs (LMP I and II) is extruded and flows through the MHGs (MHG I and II) in which electricity is produced. For a comparison, three types ofLMMGSs (LMMGS A, B and C) were built where all the parts are the same except for the LMPs. Furthermore, performances of these LMMGSs with different volume of injected liquid metal were tested respectively. Experimental results reveal that both the output voltage and power of the LMMGS increase with the volume of injected liquid metal and the size of the LMPs. In addition, a maximum output power of 80 mW is obtained by the LMMGS C with an efficiency of approximately 1.3%. Given its advantages of no side effect, light weight, small size and reliability, The LMMGS is well-suited for powering the wearable and implantable micro/nano device, such as wearable sensors, drug pumps and so on.展开更多
With explosive applications of many advanced mobile electronic devices, a pervasive energy system with long term sustainability becomes increasingly important. Among the many efforts ever tried, human power is rather ...With explosive applications of many advanced mobile electronic devices, a pervasive energy system with long term sustainability becomes increasingly important. Among the many efforts ever tried, human power is rather unique due to its independence of weather or geographical conditions and is therefore becoming a research focus. This paper is dedicated to demonstrate the possibility and feasibility of harvesting thermal energy from human body by sandwiching a thermoelectric generator (TEG) between human shoe bottom and ground, aiming to power a portable electronic device. Through the conceptual experiments conducted on adults, a maximum 3.99 mW steady state power output at a ground temperature with 273 K is obtained, which is sufficient enough to drive a lot of micro-electronic devices. Also, parametric simulations are performed to systematically clarify the factors influencing the TEG working performance. To further reveal the mechanism of this power generation modality, analytical solutions to the coupled temperature distributions for human foot and TEG module are obtained and the correlation between TEG characteristics and the output power are studied. It was demonstrated that, the TEG working as a wearable power resource by utilizing thermal energy of human foot shows enormous potential and practical values either under normal or extreme conditions.展开更多
基金Beijing Jishuitan Hospital Elite Young Scholar Programme(No.XKGG202110)
文摘To the Editor:Introduction of conventional synthetic disease-modifying antirheumatic drugs(csDMARDs)has been highly efficacious in reducing the signs and symptoms of rheumatoid arthritis(RA)and in delaying or preventing structural joint damage.Furthermore,the development and clinical use of biological DMARDs(bDMARDs)and targeted synthetic DMARDs(tsDMARDs)have dramatically altered the prognosis of patients with RA,particularly when they are combined with a treat-to-target regimen(T2T).[1]Consequently,over the last two decades,the rates of total hip arthroplasty(THA)and total knee arthroplasty(TKA)remained stable or even decreased in these special patient populations.Nevertheless,compared to patients with osteoarthritis,patients with RA have a higher risk of having worse functional outcomes and higher rates of complications after arthroplasty.This may be attributed to the complexity of the rheumatic disease process,including high disease activity,comorbidities,and immunosuppressive medications.[2]A key to making perioperative medication management decisions is to balance the risk of periprosthetic infection with the risk of a disease flare.
基金This work was supported by the National Key R&D Program of China(2018YFC1105900)the National Natural Science Foundation of China(81772319)+2 种基金the Natural Science Foundation of Beijing Municipality(7204270)the Beijing JST Research Funding(ZR-201908)the Innovation Fund for Outstanding Doctoral Candidates of Peking University Health Science Center(71013Y2029).
文摘Tissue engineering provides a promising avenue for treating cartilage defects.However,great challenges remain in the development of structurally and functionally optimized scaffolds for cartilage repair and regeneration.In this study,decellularized cartilage extracellular matrix(ECM)and waterborne polyurethane(WPU)were employed to construct WPU and WPU-ECM scaffolds by water-based 3D printing using low-temperature deposition manufacturing(LDM)system,which combines rapid deposition manufacturing with phase separation techniques.The scaffolds successfully achieved hierarchical macro-microporous structures.After adding ECM,WPU scaffolds were markedly optimized in terms of porosity,hydrophilia and bioactive components.Moreover,the optimized WPU-ECM scaffolds were found to be more suitable for cell distribution,adhesion,and proliferation than the WPU scaffolds.Most importantly,the WPU-ECM scaffold could facilitate the production of glycosaminoglycan(GAG)and collagen and the upregulation of cartilage-specific genes.These results indicated that the WPU-ECM scaffold with hierarchical macro-microporous structures could recreate a favorable microenvironment for cell adhesion,proliferation,differentiation,and ECM production.In vivo studies further revealed that the hierarchical macro-microporous WPU-ECM scaffold combined with the microfracture procedure successfully regenerated hyaline cartilage in a rabbit model.Six months after implantation,the repaired cartilage showed a similar histological structure and mechanical performance to that of normal cartilage.In conclusion,the hierarchical macro-microporous WPU-ECM scaffold may be a promising candidate for cartilage tissue engineering applications in the future.
基金supported by Research Funding of Chinese Academy of Sciences and partially by the National Natural Science Foundation of China(51376102)
文摘We disclosed the interiorly driven macroscopic Brownian motion behavior of self-powered liquid metal motors. Such tiny motors in millimeter scale move randomly at a velocity magnitude of centimeters per second in aqueous alkaline solution, well resembling the classical Brownian motion. However, unlike the existing phenomena, where the particle motions were caused by collisions from the surrounding molecules, the current random liquid metal motions are internally enabled and self-powered, along with the colliding among neighboring motors, the substrate and the surrounding electrolyte molecules. Through uniformly dissolving only 1% (mass percentage) A1 into GaInl0, many tiny motors can be quickly fabricated and activated to take the Brownian-like random motions. Further, we introduced an experimental approach of using optical image contrast, which works just like the Wilson cloud chamber, to distinctively indicate the motor trajectory resulted from the generated hydrogen gas stream. A series of unusual complicated multi-phase fluid mechanics phenomena were observed. It was also identified that the main driving factor of the motors comes from the H2 bubbles generated at the bottom of these tiny motors, which is different from the large size self-fueled liquid metal machine. Several typical mechanisms for such unconventional Brownian-like motion phenomena were preliminarily interpreted.
文摘Protrusio acetabuli(PA)is_a complication of a wide spectrum_of pathological disorders involving the hip joint,[1] The underlying.causes can be infammatory[2,3] traumatic,genetic,metabolic,infectious,and idiopathic.Inflammatory causes lead todestruction and weakening of the bone surrounding the hip with resultant migration along the joint-reaction vector.
文摘A liquid metal magnetohydrodynamics generation system (LMMGS) was proposed and demonstrated in this paper for collecting parasitic power in shoe while walking. Unlike the conventional shoe-mounted human power harvesters that use solid coil and gear mechanism, the proposed system employs liquid metal (Ga62In25Sn13) as energy carrier, where no moving part is requested in magnetohydrodynamics generators (MHGs). While walk- ing with the LMMGS, the foot alternately presses the two liquid metal pumps (LMPs) which are respectively placed in the front and rear of the sole. As a result, the liquid metal in the LMPs (LMP I and II) is extruded and flows through the MHGs (MHG I and II) in which electricity is produced. For a comparison, three types ofLMMGSs (LMMGS A, B and C) were built where all the parts are the same except for the LMPs. Furthermore, performances of these LMMGSs with different volume of injected liquid metal were tested respectively. Experimental results reveal that both the output voltage and power of the LMMGS increase with the volume of injected liquid metal and the size of the LMPs. In addition, a maximum output power of 80 mW is obtained by the LMMGS C with an efficiency of approximately 1.3%. Given its advantages of no side effect, light weight, small size and reliability, The LMMGS is well-suited for powering the wearable and implantable micro/nano device, such as wearable sensors, drug pumps and so on.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 50977087).
文摘With explosive applications of many advanced mobile electronic devices, a pervasive energy system with long term sustainability becomes increasingly important. Among the many efforts ever tried, human power is rather unique due to its independence of weather or geographical conditions and is therefore becoming a research focus. This paper is dedicated to demonstrate the possibility and feasibility of harvesting thermal energy from human body by sandwiching a thermoelectric generator (TEG) between human shoe bottom and ground, aiming to power a portable electronic device. Through the conceptual experiments conducted on adults, a maximum 3.99 mW steady state power output at a ground temperature with 273 K is obtained, which is sufficient enough to drive a lot of micro-electronic devices. Also, parametric simulations are performed to systematically clarify the factors influencing the TEG working performance. To further reveal the mechanism of this power generation modality, analytical solutions to the coupled temperature distributions for human foot and TEG module are obtained and the correlation between TEG characteristics and the output power are studied. It was demonstrated that, the TEG working as a wearable power resource by utilizing thermal energy of human foot shows enormous potential and practical values either under normal or extreme conditions.