The fabrication of highly effective photosensitizers has received considerable attention because of their attractive functions and applications in the fields of photodynamic therapy, photosynthesis, photocatalysis, et...The fabrication of highly effective photosensitizers has received considerable attention because of their attractive functions and applications in the fields of photodynamic therapy, photosynthesis, photocatalysis, etc. Thus, it is highly desirable to develop a new approach to enhance photosensitization efficiency.Herein, through coordination-driven self-assembly, a series of metallacycles with efficient fluorescence resonance energy transfer(FRET) were effectively constructed, which displayed higher photosensitization efficiency and photocatalytic activity than their model metallacycles without FRET due to broadband absorption and singlet energy transfer from the energy acceptor to the energy donor. Moreover, iodization of fluorophores induced a significant enhancement of the photosensitization efficiency and photocatalytic activity of the metallacycles. This research provides an efficient strategy for improving photosensitization efficiency and a promising platform for the preparation of effective photosensitizers and photocatalysts.展开更多
基金supported by the National Nature Science Foundation of China (No. 21871092)Program of Shanghai Outstanding Academic Leaders (No. 21XD1421200)+1 种基金the Fundamental Research Funds for the Central Universities2021 Academic Innovation Ability Enhancement Plan for Excellent Doctoral Students of East China Normal University (No. YBNLTS2021-025)。
文摘The fabrication of highly effective photosensitizers has received considerable attention because of their attractive functions and applications in the fields of photodynamic therapy, photosynthesis, photocatalysis, etc. Thus, it is highly desirable to develop a new approach to enhance photosensitization efficiency.Herein, through coordination-driven self-assembly, a series of metallacycles with efficient fluorescence resonance energy transfer(FRET) were effectively constructed, which displayed higher photosensitization efficiency and photocatalytic activity than their model metallacycles without FRET due to broadband absorption and singlet energy transfer from the energy acceptor to the energy donor. Moreover, iodization of fluorophores induced a significant enhancement of the photosensitization efficiency and photocatalytic activity of the metallacycles. This research provides an efficient strategy for improving photosensitization efficiency and a promising platform for the preparation of effective photosensitizers and photocatalysts.