Tuning of phosphor luminescence properties,including the emission energy/intensity and thermal stability,is an important way to develop superior luminescent materials for diverse applications.In this work,we discuss t...Tuning of phosphor luminescence properties,including the emission energy/intensity and thermal stability,is an important way to develop superior luminescent materials for diverse applications.In this work,we discuss the effect of band gap engineering and energy transfer on the luminescence properties of Ce^3+or Pr^3+doped(Y,Gd)AGG systems,and analyze the underlying reasons for their different phenomena.By using VUV-UV excitation spectra and constructing VRBE schemes,the changes of host band structure,5 d excited level energies and emission thermal stability of Ce^3+and Pr^3+with the incorporation of Gd^3+ions were studied.In addition,the energy transfer dynamics was also investigated in terms of the luminescence decay curves.This work demonstrates a way to tune phosphor luminescence properties by combining band gap engineering and energy transfer tailoring and provides an inspiring discussion on the different results of Ce^3+doping on the Ce^3+and Pr^3+emissions.展开更多
基金Project supported by the National Natural Science Foundation of China(21671201,U1632101,61905289,11904425)Postdoctoral Science Foundation of China(2017M622846,2019M663202)。
文摘Tuning of phosphor luminescence properties,including the emission energy/intensity and thermal stability,is an important way to develop superior luminescent materials for diverse applications.In this work,we discuss the effect of band gap engineering and energy transfer on the luminescence properties of Ce^3+or Pr^3+doped(Y,Gd)AGG systems,and analyze the underlying reasons for their different phenomena.By using VUV-UV excitation spectra and constructing VRBE schemes,the changes of host band structure,5 d excited level energies and emission thermal stability of Ce^3+and Pr^3+with the incorporation of Gd^3+ions were studied.In addition,the energy transfer dynamics was also investigated in terms of the luminescence decay curves.This work demonstrates a way to tune phosphor luminescence properties by combining band gap engineering and energy transfer tailoring and provides an inspiring discussion on the different results of Ce^3+doping on the Ce^3+and Pr^3+emissions.