Excited-state intramolecular proton transfer(ESIPT)is favored by researchers because of its unique optical properties.However,there are relatively few systematic studies on the effects of changing the electronegativit...Excited-state intramolecular proton transfer(ESIPT)is favored by researchers because of its unique optical properties.However,there are relatively few systematic studies on the effects of changing the electronegativity of atoms on the ESIPT process and photophysical properties.Therefore,we selected a series of benzoxazole isothiocyanate fluorescent dyes(2-HOB,2-HSB,and 2-HSe B)by theoretical methods,and systematically studied the ESIPT process and photophysical properties by changing the electronegativity of chalcogen atoms.The calculated bond angle,bond length,energy gap,and infrared spectrum analysis show that the order of the strength of intramolecular hydrogen bonding of the three molecules is 2-HOB<2-HSB<2-HSe B.Correspondingly,the magnitude of the energy barrier of the potential energy curve is 2-HOB>2-HSB>2-HSe B.In addition,the calculated electronic spectrum shows that as the atomic electronegativity decreases,the emission spectrum has a redshift.Therefore,this work will offer certain theoretical guidance for the synthesis and application of new dyes based on ESIPT properties.展开更多
High-performance Pb(Zr_(1−x)Ti_(x))O_(3)(PZT)piezoceramics are urgently desired by the market in view of their expanded operating temperature range,reduced property temperature dependence,and enhanced sensitivity and ...High-performance Pb(Zr_(1−x)Ti_(x))O_(3)(PZT)piezoceramics are urgently desired by the market in view of their expanded operating temperature range,reduced property temperature dependence,and enhanced sensitivity and acoustic power.In this work,we reported a kind of low-cost and high-performance 0.06BiYbO_(3)–0.94Pb(Zr_(0.48)Ti_(0.52))O_(3) ternary piezoceramics;the modifying effects of La_(2)O_(3) on this perovskite system were investigated in terms of the structures,electrical properties,and thermal depolarization behaviors of ceramics.The field-dependent dielectric and conduction properties indicated that there are close correlations among oxygen vacancies(VO),conducting electrons,and intrinsic conduction process.The degradation in ferroelectric properties observed in those samples doped with more than 0.15 wt%of La_(2)O_(3) indicated that the occupying mechanisms of La^(3+)changed from the donor substitution for Pb^(2+)to the isovalent substitution for Bi^(3+).The thermally depoling micromechanisms of ceramics were revealed from the thermodynamic processes of defect dipoles and intrinsic dipoles within ferroelectric domains.The sample doped with 0.15 wt%of La_(2)O_(3) shows excellent electrical properties with TC=387℃,d33=332 pC/N,TKε=5.81×10^(−3)℃−1,Pr=20.66μC/cm^(2),Td=356℃.The significantly enhanced electrical properties and thermal depolarization temperature benefited from the donor substitution of La3+,decreasing the oxygen vacancy concentration in the lattice and possibly optimizing the ferroelectric domain structure of ceramics.展开更多
Based on the value function of the prospect theory,this paper constructs a security function,which is used to describe the victims’feelings about the distance in emergency evacuation.Since different paths between the...Based on the value function of the prospect theory,this paper constructs a security function,which is used to describe the victims’feelings about the distance in emergency evacuation.Since different paths between the demand points and the emergency shelters are generally of different importance degrees,they are divided into main paths and auxiliary paths.The security function values and the reliability levels of main paths and auxiliary paths are given different weights.The weighted sum of the security function values and the weighted sum of the reliability level function values of all demand points are maximized to determine the location and the number of the emergency shelters,the transfer paths,the reinforced edges and the incremental reliability level of the selected edge.In order to solve the model,a two-stage simulated annealing-particle swarm optimization algorithm is proposed.In this algorithm,the particle swarm optimization(PSO)algorithm is embedded into the simulated annealing(SA)algorithm.The cumulative probability operator and the cost probability operator are formed to determine the evolution of the particles.Considering the budget constraint,the algorithm eliminates the shelter combinations that do not meet the constraint,which greatly saves the calculation time and improves the efficiency.The proposed algorithm is applied to a case,which verifies its feasibility and stability.The model and the algorithm of this paper provide a basis for emergency management departments to make the earthquake emergency planning.展开更多
Alzheimer’s disease(AD)is a progressive neurodegenerative disease and its incidence will increase with age and is aggravating.The senile plaques(SPs)are one of three main pathological features in AD patients,which ar...Alzheimer’s disease(AD)is a progressive neurodegenerative disease and its incidence will increase with age and is aggravating.The senile plaques(SPs)are one of three main pathological features in AD patients,which are formed by amyloid b-protein(Ab)overaccumulation.b-amyloid precursor protein(APP),b-site APP cleavage(BACE1),and insulin degrading enzyme(IDE)proteins participate in the process of Ab production and degradation.At present,the pathogenesis of AD is not yet clear and the current treatment methods can only relief the related symptoms of AD.The electro-acupuncture(EA)is a traditional Chinese medicine treatment combined the acupuncture and electrical stimulation and the treatment effect can also be controlled by transform the electrical frequency.Thus,in this experiment,we carried out behavioral test,immunohistochemistry(IHC),and Western Blot(WB)after different period treatments to the model mice by electro-acupuncturing“Baihui”and“Shenshu”acupoints in APPt/PS1t double transgenic mice.It was found that the EA therapy can improve the ability of learning,memory and spatial exploration,and reduce the deposition of SPs in brain of AD model mice,and reduce the expressions of APP and BACE1,increase the expression of IDE protein.These results prompt that EA can effectively alleviate the pathological process of AD.We speculate that EA may play a comprehensive role in preventing the development of AD,considering the previous data.展开更多
基金supported by the National Natural Science Foundation of China(No.21773238)the Fundamental Research Funds of Shandong University(2019GN025)。
文摘Excited-state intramolecular proton transfer(ESIPT)is favored by researchers because of its unique optical properties.However,there are relatively few systematic studies on the effects of changing the electronegativity of atoms on the ESIPT process and photophysical properties.Therefore,we selected a series of benzoxazole isothiocyanate fluorescent dyes(2-HOB,2-HSB,and 2-HSe B)by theoretical methods,and systematically studied the ESIPT process and photophysical properties by changing the electronegativity of chalcogen atoms.The calculated bond angle,bond length,energy gap,and infrared spectrum analysis show that the order of the strength of intramolecular hydrogen bonding of the three molecules is 2-HOB<2-HSB<2-HSe B.Correspondingly,the magnitude of the energy barrier of the potential energy curve is 2-HOB>2-HSB>2-HSe B.In addition,the calculated electronic spectrum shows that as the atomic electronegativity decreases,the emission spectrum has a redshift.Therefore,this work will offer certain theoretical guidance for the synthesis and application of new dyes based on ESIPT properties.
基金This work was funded by the National Natural Science Foundation of China(Grant Nos.11702037 and 11832007)State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and astronautics(Grant No.MCMS-E-0522G01)+1 种基金the Open Foundation of Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion(Grant No.MATEC2022KF001)as well as the Cultivation Project for the Natural Science Foundation and Highlevel Talent at Chengdu University(Grant No.Z1350).
文摘High-performance Pb(Zr_(1−x)Ti_(x))O_(3)(PZT)piezoceramics are urgently desired by the market in view of their expanded operating temperature range,reduced property temperature dependence,and enhanced sensitivity and acoustic power.In this work,we reported a kind of low-cost and high-performance 0.06BiYbO_(3)–0.94Pb(Zr_(0.48)Ti_(0.52))O_(3) ternary piezoceramics;the modifying effects of La_(2)O_(3) on this perovskite system were investigated in terms of the structures,electrical properties,and thermal depolarization behaviors of ceramics.The field-dependent dielectric and conduction properties indicated that there are close correlations among oxygen vacancies(VO),conducting electrons,and intrinsic conduction process.The degradation in ferroelectric properties observed in those samples doped with more than 0.15 wt%of La_(2)O_(3) indicated that the occupying mechanisms of La^(3+)changed from the donor substitution for Pb^(2+)to the isovalent substitution for Bi^(3+).The thermally depoling micromechanisms of ceramics were revealed from the thermodynamic processes of defect dipoles and intrinsic dipoles within ferroelectric domains.The sample doped with 0.15 wt%of La_(2)O_(3) shows excellent electrical properties with TC=387℃,d33=332 pC/N,TKε=5.81×10^(−3)℃−1,Pr=20.66μC/cm^(2),Td=356℃.The significantly enhanced electrical properties and thermal depolarization temperature benefited from the donor substitution of La3+,decreasing the oxygen vacancy concentration in the lattice and possibly optimizing the ferroelectric domain structure of ceramics.
文摘Based on the value function of the prospect theory,this paper constructs a security function,which is used to describe the victims’feelings about the distance in emergency evacuation.Since different paths between the demand points and the emergency shelters are generally of different importance degrees,they are divided into main paths and auxiliary paths.The security function values and the reliability levels of main paths and auxiliary paths are given different weights.The weighted sum of the security function values and the weighted sum of the reliability level function values of all demand points are maximized to determine the location and the number of the emergency shelters,the transfer paths,the reinforced edges and the incremental reliability level of the selected edge.In order to solve the model,a two-stage simulated annealing-particle swarm optimization algorithm is proposed.In this algorithm,the particle swarm optimization(PSO)algorithm is embedded into the simulated annealing(SA)algorithm.The cumulative probability operator and the cost probability operator are formed to determine the evolution of the particles.Considering the budget constraint,the algorithm eliminates the shelter combinations that do not meet the constraint,which greatly saves the calculation time and improves the efficiency.The proposed algorithm is applied to a case,which verifies its feasibility and stability.The model and the algorithm of this paper provide a basis for emergency management departments to make the earthquake emergency planning.
基金The present study was supported by the National Natural Science Foundation of China(NO.81273870)Chongqing Science and Technology Commission Basic and Frontier Project(NO.cstc2014jcyjA10028)Chongqing Yuzhong Technology Project(NO.20150122).
文摘Alzheimer’s disease(AD)is a progressive neurodegenerative disease and its incidence will increase with age and is aggravating.The senile plaques(SPs)are one of three main pathological features in AD patients,which are formed by amyloid b-protein(Ab)overaccumulation.b-amyloid precursor protein(APP),b-site APP cleavage(BACE1),and insulin degrading enzyme(IDE)proteins participate in the process of Ab production and degradation.At present,the pathogenesis of AD is not yet clear and the current treatment methods can only relief the related symptoms of AD.The electro-acupuncture(EA)is a traditional Chinese medicine treatment combined the acupuncture and electrical stimulation and the treatment effect can also be controlled by transform the electrical frequency.Thus,in this experiment,we carried out behavioral test,immunohistochemistry(IHC),and Western Blot(WB)after different period treatments to the model mice by electro-acupuncturing“Baihui”and“Shenshu”acupoints in APPt/PS1t double transgenic mice.It was found that the EA therapy can improve the ability of learning,memory and spatial exploration,and reduce the deposition of SPs in brain of AD model mice,and reduce the expressions of APP and BACE1,increase the expression of IDE protein.These results prompt that EA can effectively alleviate the pathological process of AD.We speculate that EA may play a comprehensive role in preventing the development of AD,considering the previous data.