Reservoir computing(RC)is an energy-efficient computational framework with low training cost and high efficiency in processing spatiotemporal information.The state-of-the-art fully memristor-based hardware RC system s...Reservoir computing(RC)is an energy-efficient computational framework with low training cost and high efficiency in processing spatiotemporal information.The state-of-the-art fully memristor-based hardware RC system suffers from bottlenecks in the computation efficiencies and accuracy due to the limited temporal tunability in the volatile memristor for the reservoir layer and the nonlinearity in the nonvolatile memristor for the readout layer.Additionally,integrating different types of memristors brings fabrication and integration complexities.To overcome the challenges,a multifunctional multi-terminal electrolyte-gated transistor(MTEGT)that combines both electrostatic and electrochemical doping mechanisms is proposed in this work,integrating both widely tunable volatile dynamics with high temporal tunable range of 10^(2) and nonvolatile memory properties with high long-term potentiation/long-term depression(LTP/LTD)linearity into a single device.An ion-controlled physical RC system fully implemented with only one type of MTEGT is constructed for image recognition using the volatile dynamics for the reservoir and nonvolatility for the readout layer.Moreover,an ultralow normalized mean square error of 0.002 is achieved in a time series prediction task.It is believed that the MTEGT would underlie next-generation neuromorphic computing systems with low hardware costs and high computational performance.展开更多
Water quality restoration in rivers requires identification of the locations and discharges of pollution sources,and a reliable mathematical model to accomplish this identification is essential.In this paper,an innova...Water quality restoration in rivers requires identification of the locations and discharges of pollution sources,and a reliable mathematical model to accomplish this identification is essential.In this paper,an innovative framework is presented to inversely estimate pollution sources for both accident preparedness and normal management of the allowable pollutant discharge.The proposed model integrates the concepts of the hydrodynamic diffusion wave equation and an improved Bayesian-Markov chain Monte Carlo method(MCMC).The methodological framework is tested using a designed case of a sudden wastewater spill incident(i.e.,source location,flow rate,and starting and ending times of the discharge)and a real case of multiple sewage inputs into a river(i.e.,locations and daily flows of sewage sources).The proposed modeling based on the improved Bayesian-MCMC method can effectively solve high-dimensional search and optimization problems according to known river water levels at pre-set monitoring sites.It can adequately provide accurate source estimation parameters using only one simulation through exploration of the full parameter space.In comparison,the inverse models based on the popular random walk Metropolis(RWM)algorithm and microbial genetic algorithm(MGA)do not produce reliable estimates for the two scenarios even after multiple simulation runs,and they fall into locally optimal solutions.Since much more water level data are available than water quality data,the proposed approach also provides a cost-effective solution for identifying pollution sources in rivers with the support of high-frequency water level data,especially for rivers receiving significant sewage discharges.展开更多
基金supported by Guangdong Basic and Applied Basic Research Foundation(No.2022A1515011272)the National Natural Science Foundation of China(Nos.61904208,62104091,52273246)+2 种基金Guangdong Natural Science Foundation(No.2022A1515011064)Young Innovative Talent Project Research Program(No.2021KQNCX077)Shenzhen Science and Technology Program(Nos.JCYJ20190807155411277,JCYJ20220530115204009).
文摘Reservoir computing(RC)is an energy-efficient computational framework with low training cost and high efficiency in processing spatiotemporal information.The state-of-the-art fully memristor-based hardware RC system suffers from bottlenecks in the computation efficiencies and accuracy due to the limited temporal tunability in the volatile memristor for the reservoir layer and the nonlinearity in the nonvolatile memristor for the readout layer.Additionally,integrating different types of memristors brings fabrication and integration complexities.To overcome the challenges,a multifunctional multi-terminal electrolyte-gated transistor(MTEGT)that combines both electrostatic and electrochemical doping mechanisms is proposed in this work,integrating both widely tunable volatile dynamics with high temporal tunable range of 10^(2) and nonvolatile memory properties with high long-term potentiation/long-term depression(LTP/LTD)linearity into a single device.An ion-controlled physical RC system fully implemented with only one type of MTEGT is constructed for image recognition using the volatile dynamics for the reservoir and nonvolatility for the readout layer.Moreover,an ultralow normalized mean square error of 0.002 is achieved in a time series prediction task.It is believed that the MTEGT would underlie next-generation neuromorphic computing systems with low hardware costs and high computational performance.
基金the National Natural Science Foundation of China(Grant No.51979195)the National Key R&D Program of China(No.2021YFC3200703).
文摘Water quality restoration in rivers requires identification of the locations and discharges of pollution sources,and a reliable mathematical model to accomplish this identification is essential.In this paper,an innovative framework is presented to inversely estimate pollution sources for both accident preparedness and normal management of the allowable pollutant discharge.The proposed model integrates the concepts of the hydrodynamic diffusion wave equation and an improved Bayesian-Markov chain Monte Carlo method(MCMC).The methodological framework is tested using a designed case of a sudden wastewater spill incident(i.e.,source location,flow rate,and starting and ending times of the discharge)and a real case of multiple sewage inputs into a river(i.e.,locations and daily flows of sewage sources).The proposed modeling based on the improved Bayesian-MCMC method can effectively solve high-dimensional search and optimization problems according to known river water levels at pre-set monitoring sites.It can adequately provide accurate source estimation parameters using only one simulation through exploration of the full parameter space.In comparison,the inverse models based on the popular random walk Metropolis(RWM)algorithm and microbial genetic algorithm(MGA)do not produce reliable estimates for the two scenarios even after multiple simulation runs,and they fall into locally optimal solutions.Since much more water level data are available than water quality data,the proposed approach also provides a cost-effective solution for identifying pollution sources in rivers with the support of high-frequency water level data,especially for rivers receiving significant sewage discharges.