Plasmonic Pd nanosheets have been emerging as promising materials for application in near-infrared(NIR) photothermal therapy(PTT) of cancer. However, animal in mice studies indicated that the original synthesized poly...Plasmonic Pd nanosheets have been emerging as promising materials for application in near-infrared(NIR) photothermal therapy(PTT) of cancer. However, animal in mice studies indicated that the original synthesized poly(vinylpyrrolidone)(PVP)-protected small Pd nanosheets(Pd-PVP) and some further surface-modified small Pd nanosheets such as Pd-PEG(SH) easily accumulated in reticuloendothelial system(RES) organs(liver, spleen, etc.) and were difficult to be cleared from these organs quickly. In the work, we surprisingly found that glutathione(GSH) could promote the clearance of surface-modified small Pd nanosheets(e.g. Pd-PVP, Pd-PEG(SH) and Pd-GSH) from the RES organs efficiently. The effects of GSH on the biodistribution and clearance of different surface-modified Pd nanosheets were investigated. Our results indicated that these surface-modified Pd nanosheets with or without GSH added caused no morbidity at target primary organs, and GSH can promote the clearance of different surface-modified Pd nanosheets in the order of Pd-PVP≈Pd-PEG(SH)>Pd-GSH. This study suggests that glutathione could be an attractive reagent for promoting nanomaterials eliminated from the reticuloendothelial systems(RES).展开更多
基金supported by the National Natural Science Foundation of China(21101131)the National Basic Research Program of China(2014CB932004)+2 种基金the Natural Science Foundation of Fujian Province(2012J01056)the Fundamental Research Funds for the Central Universities(2010121015)the open project grant from State Key Laboratory of Chemo/biosensing and Chemometrics(2013009)
文摘Plasmonic Pd nanosheets have been emerging as promising materials for application in near-infrared(NIR) photothermal therapy(PTT) of cancer. However, animal in mice studies indicated that the original synthesized poly(vinylpyrrolidone)(PVP)-protected small Pd nanosheets(Pd-PVP) and some further surface-modified small Pd nanosheets such as Pd-PEG(SH) easily accumulated in reticuloendothelial system(RES) organs(liver, spleen, etc.) and were difficult to be cleared from these organs quickly. In the work, we surprisingly found that glutathione(GSH) could promote the clearance of surface-modified small Pd nanosheets(e.g. Pd-PVP, Pd-PEG(SH) and Pd-GSH) from the RES organs efficiently. The effects of GSH on the biodistribution and clearance of different surface-modified Pd nanosheets were investigated. Our results indicated that these surface-modified Pd nanosheets with or without GSH added caused no morbidity at target primary organs, and GSH can promote the clearance of different surface-modified Pd nanosheets in the order of Pd-PVP≈Pd-PEG(SH)>Pd-GSH. This study suggests that glutathione could be an attractive reagent for promoting nanomaterials eliminated from the reticuloendothelial systems(RES).