Dear Editor,This letter presents a prescribed-instant stabilization approach to high-order integrator systems by the Lyapunov method. Under the presented controller, the settling time of controlled systems is independ...Dear Editor,This letter presents a prescribed-instant stabilization approach to high-order integrator systems by the Lyapunov method. Under the presented controller, the settling time of controlled systems is independent of the initial conditions and equals the prescribed time instant.展开更多
Pathological myocardial hypertrophy is a common early clinical manifestation of heart failure,with noncoding RNAs exerting regulatory influence.However,the molecular function of circular RNAs(circRNAs)in the progressi...Pathological myocardial hypertrophy is a common early clinical manifestation of heart failure,with noncoding RNAs exerting regulatory influence.However,the molecular function of circular RNAs(circRNAs)in the progression from cardiac hypertrophy to heart failure remains unclear.To uncover functional circRNAs and identify the core circRNA signaling pathway in heart failure,we construct a global triple network(microRNA,circRNA,and mRNA)based on the competitive endogenous RNA(ceRNA)theory.We observe that cardiac hypertrophy-related circRNA(circRNA CHRC),within the ceRNA network,is down-regulated in both transverse aortic constriction mice and Ang-II--treated primary mouse cardiomyocytes.Silencing circRNA CHRC increases cross-sectional cell area,atrial natriuretic peptide,andβ-myosin heavy chain levels in primary mouse cardiomyocytes.Further screening shows that circRNA CHRC targets the miR-431-5p/KLF15 axis implicated in heart failure progression in vivo and in vitro.Immunoprecipitation with anti-Ago2-RNA confirms the interaction between circRNA CHRC and miR-431-5p,while miR-431-5p mimics reverse Klf15 activation caused by circRNA CHRC overexpression.In summary,circRNA CHRC attenuates cardiac hypertrophy via sponging miR-431-5p to maintain the normal level of Klf15 expression.展开更多
文摘Dear Editor,This letter presents a prescribed-instant stabilization approach to high-order integrator systems by the Lyapunov method. Under the presented controller, the settling time of controlled systems is independent of the initial conditions and equals the prescribed time instant.
基金supported by the National Natural Science Foundation of China(32071109,82070270,M-0048)the Shanghai Committee of Science and Technology(22ZR1463800,21ZR1467000)+1 种基金the Shanghai Jing'an District Discipline Construction Project(2021PY03)CAMS Innovation Fund for Medical Sciences(2019-I2M-5–053)。
文摘Pathological myocardial hypertrophy is a common early clinical manifestation of heart failure,with noncoding RNAs exerting regulatory influence.However,the molecular function of circular RNAs(circRNAs)in the progression from cardiac hypertrophy to heart failure remains unclear.To uncover functional circRNAs and identify the core circRNA signaling pathway in heart failure,we construct a global triple network(microRNA,circRNA,and mRNA)based on the competitive endogenous RNA(ceRNA)theory.We observe that cardiac hypertrophy-related circRNA(circRNA CHRC),within the ceRNA network,is down-regulated in both transverse aortic constriction mice and Ang-II--treated primary mouse cardiomyocytes.Silencing circRNA CHRC increases cross-sectional cell area,atrial natriuretic peptide,andβ-myosin heavy chain levels in primary mouse cardiomyocytes.Further screening shows that circRNA CHRC targets the miR-431-5p/KLF15 axis implicated in heart failure progression in vivo and in vitro.Immunoprecipitation with anti-Ago2-RNA confirms the interaction between circRNA CHRC and miR-431-5p,while miR-431-5p mimics reverse Klf15 activation caused by circRNA CHRC overexpression.In summary,circRNA CHRC attenuates cardiac hypertrophy via sponging miR-431-5p to maintain the normal level of Klf15 expression.