Quantum dot light-emitting diodes(QD-LEDs)are considered as competitive candidate for next-generation displays or lightings.Recent advances in the synthesis of core/shell quantum dots(QDs)and tailoring procedures for ...Quantum dot light-emitting diodes(QD-LEDs)are considered as competitive candidate for next-generation displays or lightings.Recent advances in the synthesis of core/shell quantum dots(QDs)and tailoring procedures for achieving their high quantum yield have facilitated the emergence of high-performance QD-LEDs.Meanwhile,the charge-carrier dynamics in QD-LED devices,which constitutes the remaining core research area for further improvement of QD-LEDs,is,however,poorly understood yet.Here,we propose a charge transport model in which the charge-carrier dynamics in QD-LEDs are comprehensively described by computer simulations.The charge-carrier injection is modelled by the carrier-capturing process,while the effect of electric fields at their interfaces is considered.The simulated electro-optical characteristics of QD-LEDs,such as the luminance,current density and external quantum efficiency(EQE)curves with varying voltages,show excellent agreement with experiments.Therefore,our computational method proposed here provides a useful means for designing and optimising high-performance QD-LED devices.展开更多
基金This research was supported by the European Union under H2020 grant agreement No 685758‘1D-NEON’by the Engineering and Physical Sciences Research Council(EPSRC)project EP/P027628/1‘Smart Flexible Quantum Dot Lighting’.
文摘Quantum dot light-emitting diodes(QD-LEDs)are considered as competitive candidate for next-generation displays or lightings.Recent advances in the synthesis of core/shell quantum dots(QDs)and tailoring procedures for achieving their high quantum yield have facilitated the emergence of high-performance QD-LEDs.Meanwhile,the charge-carrier dynamics in QD-LED devices,which constitutes the remaining core research area for further improvement of QD-LEDs,is,however,poorly understood yet.Here,we propose a charge transport model in which the charge-carrier dynamics in QD-LEDs are comprehensively described by computer simulations.The charge-carrier injection is modelled by the carrier-capturing process,while the effect of electric fields at their interfaces is considered.The simulated electro-optical characteristics of QD-LEDs,such as the luminance,current density and external quantum efficiency(EQE)curves with varying voltages,show excellent agreement with experiments.Therefore,our computational method proposed here provides a useful means for designing and optimising high-performance QD-LED devices.