Bioadsorption phenomenon is more or less like a chemical reaction and several parameters are bound to affect the process. The pH, amount of adsorbent and agitation time influence the biosorptive potentiality. Hence, t...Bioadsorption phenomenon is more or less like a chemical reaction and several parameters are bound to affect the process. The pH, amount of adsorbent and agitation time influence the biosorptive potentiality. Hence, the present study on adsorption of Cr(VI) by activated Vetivera roots and Blue green algae Anabaena supports that it is an effective low cost adsorbent for the removal of Cr(VI) from plating effluent. Langmuir and Freundlich adsorption isotherm correlate the equilibrium adsorption data. In batch experiments both Vetiveria and Anabaena species were found to be cost effective biosorbent for the efficient removal of Cr(VI) from the effluent and comparatively Anabaena species was found to adsorb maximum Cr(VI) (88.86%) at a low contact time of 60 min. The data obtained from the experiments and modeling would prove useful in designing and fabricating an efficient treatment plant for Cr(VI) rich effluent.展开更多
文摘Bioadsorption phenomenon is more or less like a chemical reaction and several parameters are bound to affect the process. The pH, amount of adsorbent and agitation time influence the biosorptive potentiality. Hence, the present study on adsorption of Cr(VI) by activated Vetivera roots and Blue green algae Anabaena supports that it is an effective low cost adsorbent for the removal of Cr(VI) from plating effluent. Langmuir and Freundlich adsorption isotherm correlate the equilibrium adsorption data. In batch experiments both Vetiveria and Anabaena species were found to be cost effective biosorbent for the efficient removal of Cr(VI) from the effluent and comparatively Anabaena species was found to adsorb maximum Cr(VI) (88.86%) at a low contact time of 60 min. The data obtained from the experiments and modeling would prove useful in designing and fabricating an efficient treatment plant for Cr(VI) rich effluent.