期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhancement of removal efficiency of heavy metal ions by polyaniline deposition on electrospun polyacrylonitrile membranes 被引量:4
1
作者 Noor Mohammad yomen atassi 《Water Science and Engineering》 EI CAS CSCD 2021年第2期129-138,共10页
This paper describes the preparation of a membrane of polyacrylonitrile(PAN)and its corresponding membrane coated with polyaniline(PANI)for the adsorption of heavy metal ions.Scanning electron microscopy micrographs r... This paper describes the preparation of a membrane of polyacrylonitrile(PAN)and its corresponding membrane coated with polyaniline(PANI)for the adsorption of heavy metal ions.Scanning electron microscopy micrographs revealed that all the membranes exhibited nanofibrous morphology.The prepared membranes were characterized by Fourier transform infrared spectroscopy(FTIR).The prepared membranes were used as an adsorbent for hazardous heavy metal ions Pb^(2+) and Cr_(2)O^(2-)_(7).The adsorption capacity and the removal efficiency of the membranes were examined as function of the initial adsorbate concentration and pH of the medium.Coated membranes with PANI showed better adsorption performance and their direct current(DC)conductivities were correlated to heavy metal ion concentrations.Adsorption isotherms were also performed,and the adsorption process was tested according to the Langmuir and Freundlich models.The regeneration and reuse of the prepared membranes to re-adsorb heavy metal ions were also investigated.The enhancement in adsorption performance and reusability of PANI-coated membranes in comparison with non-coated ones is fully discussed.The results show that the maximum adsorption capacities of lead and chromate ions on the PANI-coated membranes are 290.12 and 1202.53 mg/g,respectively. 展开更多
关键词 Membrane ELECTROSPINNING POLYANILINE POLYACRYLONITRILE Heavy metal ion removal
下载PDF
Optimizing Cr^(3+) concentration and evaluating energy transfer from Cr^(3+) to Nd^(3+) in Cr,Nd:GGG nanocrystals prepared by sol-gel method 被引量:1
2
作者 Yassin Alshikh Mohamad yomen atassi Zafer Moussa 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第11期1077-1082,共6页
Nanopowder of Cr:GGG and nanopowder of Cr,Nd:GGG with different concentrations of Cr3+ ranging from 0.1 at.% to 1.5 at.% were synthesized by the sol-gel method using acetic acid and ethylene glycol. Thermal gravime... Nanopowder of Cr:GGG and nanopowder of Cr,Nd:GGG with different concentrations of Cr3+ ranging from 0.1 at.% to 1.5 at.% were synthesized by the sol-gel method using acetic acid and ethylene glycol. Thermal gravimetric analysis and differential scanning calorimetry (TGA-DSC), X-ray diffraction (XRD) and photoluminescence spectroscopy were used to characterize the powder. The crystallite size was about 58 nm when treated at 1000 oC for 2 h. Cr3+ photoluminescence spectrum in GGG showed a broad band emission around 730 nm. The intensity of this band decreased when co-doped with Nd, indicating an efficient energy transfer from Cr3+ to Nd3+. Photoluminescence intensity of Nd in Cr,Nd:GGG at 1.06μm showed that the optimum concentration of Cr3+ was about 1 at.% (more or less) for 1 at.% Nd3+. This result was also confirmed by chromium fluorescence decay rate analysis. Energy transfer efficiency was found to be about 84% for 1 at.% concentration of each chromium and neodymium. 展开更多
关键词 NANOPOWDER Cr Nd:GGG sol-gel fluorescence lifetime energy transfer efficiency rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部