Somatosensory evoked potentials(SEPs)have been widely used to assess neurological function in clinical practice.A good understanding of the association between SEP signals and neurological function is helpful for prec...Somatosensory evoked potentials(SEPs)have been widely used to assess neurological function in clinical practice.A good understanding of the association between SEP signals and neurological function is helpful for precise diagnosis of impairment location.Previous studies on SEPs have been reported in animal models.However,few studies have reported the relationships between SEP waveforms in animals and those in humans.In this study,we collected normal SEP waveforms and decomposed them into specific time–frequency components(TFCs).Our results showed three stable TFC distribution regions in intact goats and rats and in humans.After we induced spinal cord injury in the animal models,a greater number of small TFC distribution regions were observed in the injured goat and rat groups than in the normal group.Moreover,there were significant correlations(P<0.05)and linear relationships between the main SEP TFCs of the human group and those of the goat and rat groups.A stable TFC distribution of SEP components was observed in the human,goat and rat groups,and the TFC distribution modes were similar between the three groups.Results in various animal models in this study could be translated to future clinical studies based on SEP TFC analysis.Human studies were approved by the Institutional Review Board of the University of Hong Kong/Hospital Authority Hong Kong West Cluster(approval No.UM 05-312 T/975)on December 5,2005.Rat experiments were approved by the Committee on the Use of Live Animals in Teaching and Research of Li Ka Shing Faculty of Medicine of the University of Hong Kong(approval No.CULART 2912-12)on January 28,2013.Goat experiments were approved by the Animal Ethics Committee of Affiliated Hospital of Guangdong Medical University(approval No.GDY2002132)on March 5,2018.展开更多
Modulating electronic structures of single-atom metal cocatalysts is vital for highly active photoreduction of CO_(2),and it's especially challenging to develop a facile method to modify the dispersion of atomical...Modulating electronic structures of single-atom metal cocatalysts is vital for highly active photoreduction of CO_(2),and it's especially challenging to develop a facile method to modify the dispersion of atomical photocatalytic sites.We herein report an ion-loading pyrolysis route to in-situ anchor Pd single atoms as well as twinned Pd nanoparticles on ultra-thin graphitic carbon nitride nanosheets(PdTP/Pd_(SA)-CN)for high-efficiency photoreduction of CO_(2).The anchored Pd twinned nanoparticles donate electrons to adjacent single Pd–N_(4) sites through the carbon nitride networks,and the optimized PdTP/Pd_(SA)-CN photocatalyst exhibits a CO evolution rate up to 46.5μmol g^(-1) h^(-1) with nearly 100%selectivity.As revealed by spectroscopic and theoretical analyses,the superior photocatalytic activity is attributed to the lowered desorption barrier of carbonyl species at electron-enriched Pd single atoms,together with the improved efficiencies of light-harvesting and charge separation/transport.This work has demonstrated the engineering of the electron density of single active sites with twinned metal nanoparticles assisted by strong electronic interaction with the support of the atomic metal,and unveiled the underlying mechanism for expedited photocatalytic efficiency.展开更多
A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores...A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores.High viscosity/viscoelasticity of the fracturing fluid was required to maintain excellent proppant suspension properties before gelling.Taking into account both the cost and the potential damage to reservoirs,polymers with lower concentrations and molecular weights are generally preferred.In this work,the supramolecular action was integrated into the polymer,resulting in significant increases in the viscosity and viscoelasticity of the synthesized supramolecular polymer system.The double network gel,which is formed by the combination of the supramolecular polymer system and a small quantity of Zr-crosslinker,effectively resists temperature while minimizing permeability damage to the reservoir.The results indicate that the supramolecular polymer system with a molecular weight of(268—380)×10^(4)g/mol can achieve the same viscosity and viscoelasticity at 0.4 wt%due to the supramolecular interaction between polymers,compared to the 0.6 wt%traditional polymer(hydrolyzed polyacrylamide,molecular weight of 1078×10^(4)g/mol).The supramolecular polymer system possessed excellent proppant suspension properties with a 0.55 cm/min sedimentation rate at 0.4 wt%,whereas the0.6 wt%traditional polymer had a rate of 0.57 cm/min.In comparison to the traditional gel with a Zrcrosslinker concentration of 0.6 wt%and an elastic modulus of 7.77 Pa,the double network gel with a higher elastic modulus(9.00 Pa)could be formed only at 0.1 wt%Zr-crosslinker,which greatly reduced the amount of residue of the fluid after gel-breaking.The viscosity of the double network gel was66 m Pa s after 2 h shearing,whereas the traditional gel only reached 27 m Pa s.展开更多
High content of asphaltenes and waxes leads to the high pour point and the poor flowability of heavy oil,which is adverse to its efficient development and its transportation in pipe.Understanding the interaction mecha...High content of asphaltenes and waxes leads to the high pour point and the poor flowability of heavy oil,which is adverse to its efficient development and its transportation in pipe.Understanding the interaction mechanism between asphaltene-wax is crucial to solve these problems,but it is still unclear.In this paper,molecular dynamics simulation was used to investigate the interaction between asphaltenewax and its effects on the crystallization behavior of waxes in heavy oil.Results show that molecules in pure wax are arranged in a paralleled geometry.But wax molecules in heavy oil,which are close to the surface of asphaltene aggregates,are bent and arranged irregularly.When the mass fraction of asphaltenes in asphaltene-wax system(ω_(asp))is 0-25 wt%,the attraction among wax molecules decreases and the bend degree of wax molecules increases with the increase ofω_(asp).Theω_(asp)increases from 0 to 25 wt%,and the attraction between asphaltene-wax is stronger than that among waxes.This causes that the wax precipitation point changes from 353 to 333 K.While theω_(asp)increases to 50 wt%,wax molecules are more dispersed owing to the steric hindrance of asphaltene aggregates,and the interaction among wax molecules transforms from attraction to repulsion.It causes that the ordered crystal structure of waxes can't be formed at normal temperature.Simultaneously,the asphaltene,with the higher molecular weight or the more hetero atoms,has more obvious inhibition to the formation of wax crystals.Besides,resins also have an obvious inhibition on the wax crystal due to the formation of asphalteneresin aggregates with a larger radius.Our results reveal the interaction mechanism between asphaltene-wax,and provide useful guidelines for the development of heavy oil.展开更多
Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were dep...Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were deposited on Zr alloy substrates using multi-arc ion plating technology,and scratch tests were subsequently conducted to estimate the adhesion property of the coatings.The results indicated that Cr coatings had better adhesion strength than HEA coatings,and the HEA coatings showed brittleness.The special quasi-random structure approach was used to build HEA models,and Cr/Zr and HEA/Zr interface models were employed to investigate the cohesion between the coatings and Zr substrate using first-principles calculations.The calculated interface energies showed that the cohesion between the Cr coating and the Zr substrate was stronger than that of the HEA coating with Zr.In contrary to Al or Si in the HEA coating,Cr,Nb,and Ti atoms binded strongly with Zr substrate.Based on the calculated elastic constants,it was found that low Cr and high Al content decreased the mechanical performances of HEA coatings.Finally,this study demonstrated the utilization of a combined approach involving first-principles calculations and experimental studies for future HEA coating development.展开更多
Multi-label image classification is recognized as an important task within the field of computer vision,a discipline that has experienced a significant escalation in research endeavors in recent years.The widespread a...Multi-label image classification is recognized as an important task within the field of computer vision,a discipline that has experienced a significant escalation in research endeavors in recent years.The widespread adoption of convolutional neural networks(CNNs)has catalyzed the remarkable success of architectures such as ResNet-101 within the domain of image classification.However,inmulti-label image classification tasks,it is crucial to consider the correlation between labels.In order to improve the accuracy and performance of multi-label classification and fully combine visual and semantic features,many existing studies use graph convolutional networks(GCN)for modeling.Object detection and multi-label image classification exhibit a degree of conceptual overlap;however,the integration of these two tasks within a unified framework has been relatively underexplored in the existing literature.In this paper,we come up with Object-GCN framework,a model combining object detection network YOLOv5 and graph convolutional network,and we carry out a thorough experimental analysis using a range of well-established public datasets.The designed framework Object-GCN achieves significantly better performance than existing studies in public datasets COCO2014,VOC2007,VOC2012.The final results achieved are 86.9%,96.7%,and 96.3%mean Average Precision(mAP)across the three datasets.展开更多
The locally noncentrosymmetric heavy fermion superconductor CeRh_(2)As_(2) has attracted considerable interests due to its rich superconducting phases,accompanied by possible quadrupole density wave and pronounced ant...The locally noncentrosymmetric heavy fermion superconductor CeRh_(2)As_(2) has attracted considerable interests due to its rich superconducting phases,accompanied by possible quadrupole density wave and pronounced antiferromagnetic excitations.To understand the underlying physics,here we report measurements from highresolution angle-resolved photoemission.Our results reveal fine splittings of the conduction bands related to the locally noncentrosymmetric structure,as well as a quasi-two-dimensional Fermi surface(FS)with strong 4f contributions.The FS shows signs of nesting with an in-plane vector q_(1)=(π/α,π/α),which is facilitated by the heavy bands nearˉ𝑋arising from the characteristic conduction-X hybridization.The FS nesting provides a natural explanation for the observed antiferromagnetic spin fluctuations at(π/α,π/α),which might be the driving force for its unconventional superconductivity.Our experimental results can be reasonably explained by density functional theory plus dynamical mean field theory calculations,which can capture the strong correlation effects.Our study not only provides spectroscopic signature of the key factors underlying the field-induced superconducting transition,but also uncovers the critical role of FS nesting and lattice Kondo effect in the underlying magnetic fluctuations.展开更多
Background: Aortic dissection (AD) is one of the common causes of fatal chest pain in emergency medicine. The main and most common clinical manifestation is pain, with about 90% of patients experiencing sudden persist...Background: Aortic dissection (AD) is one of the common causes of fatal chest pain in emergency medicine. The main and most common clinical manifestation is pain, with about 90% of patients experiencing sudden persistent, tearing or cutting-like pain in the chest or back. However, there have also been reports of myocardial infarction, heart failure, renal failure, syncope, shock, stroke, paraplegia and other cases. Clinical misdiagnosis is common. Aim: Alert clinicians to aortic dissection with shock and chest tightness as the main clinical presentations. Case Presentation: Report on two cases of aortic dissection with syncope and shock as the main manifestations. Conclusion: Aortic dissection is a highly dangerous cardiovascular emergency with a high mortality rate. In clinical practice, awareness of the clinical manifestations of aortic dissection should be increased. Careful inquiry about medical history, attention to atypical clinical presentations of aortic dissection, thorough physical examination, and comprehensive diagnostic evaluation can improve the success rate of diagnosing aortic dissection.展开更多
Culture teaching is an inseparable part of International Chinese Language Education,and it has great significance in international Chinese language teaching.Students can enhance their interest in Chinese language lear...Culture teaching is an inseparable part of International Chinese Language Education,and it has great significance in international Chinese language teaching.Students can enhance their interest in Chinese language learning and improve their learning effect through understanding the excellent traditional Chinese culture,at the same time,culture teaching can help to disseminate the Chinese culture and promote the development of a multicultural world.Taking the teaching of Chinese New Year culture as an example,we analyze the current teaching materials involving Chinese New Year culture with high popularity and acceptance,put forward effective teaching methods matching the feasibility of teaching Chinese New Year culture,and then present the specific teaching design of Chinese New Year culture,in order to provide references for the teaching of culture in International Chinese Language Education.展开更多
Based on the Dikken analytical calculation method of wellbore pressure loss under single-phase fluid and turbulent flow conditions, the correlation model between horizontal well output and horizontal section length an...Based on the Dikken analytical calculation method of wellbore pressure loss under single-phase fluid and turbulent flow conditions, the correlation model between horizontal well output and horizontal section length and horizontal section distributed pressure difference is constructed. The influence degree of wellbore pressure loss on daily oil production of horizontal well, horizontal section pressure and production effect of horizontal well under different horizontal well lengths is analyzed, which provides certain reference for the design of horizontal well length and well layout.展开更多
Ferroptosis is an iron-dependent novel cell death pathway. Deferoxamine, a ferroptosis inhibitor, has been reported to promote spinal cord injury repair. It has yet to be clarified whether ferroptosis inhibition repre...Ferroptosis is an iron-dependent novel cell death pathway. Deferoxamine, a ferroptosis inhibitor, has been reported to promote spinal cord injury repair. It has yet to be clarified whether ferroptosis inhibition represents the mechanism of action of Deferoxamine on spinal cord injury recovery. A rat model of Deferoxamine at thoracic 10 segment was established using a modified Allen's method. Ninety 8-week-old female Wistar rats were used. Rats in the Deferoxamine group were intraperitoneally injected with 100 mg/kg Deferoxamine 30 minutes before injury. Simultaneously, the Sham and Deferoxamine groups served as controls. Drug administration was conducted for 7 consecutive days. The results were as follows:(1) Electron microscopy revealed shrunken mitochondria in the spinal cord injury group.(2) The Basso, Beattie and Bresnahan locomotor rating score showed that recovery of the hindlimb was remarkably better in the Deferoxamine group than in the spinal cord injury group.(3) The iron concentration was lower in the Deferoxamine group than in the spinal cord injury group after injury.(4) Western blot assay revealed that, compared with the spinal cord injury group, GPX4, xCT, and glutathione expression was markedly increased in the Deferoxamine group.(5) Real-time polymerase chain reaction revealed that, compared with the Deferoxamine group, mRNA levels of ferroptosis-related genes Acyl-CoA synthetase family member 2(ACSF2) and iron-responsive element-binding protein 2(IREB2) were up-regulated in the Deferoxamine group.(6) Deferoxamine increased survival of neurons and inhibited gliosis. These findings confirm that Deferoxamine can repair spinal cord injury by inhibiting ferroptosis. Targeting ferroptosis is therefore a promising therapeutic approach for spinal cord injury.展开更多
Two batches of commercial IN738LC alloy powders with different Zr contents were printed under the same parameters.The influences of Zr content(0.024 wt.% and 0.12 wt.%,respectively) in powders on crack density,distrib...Two batches of commercial IN738LC alloy powders with different Zr contents were printed under the same parameters.The influences of Zr content(0.024 wt.% and 0.12 wt.%,respectively) in powders on crack density,distribution,formation mechanism and mechanical properties of selective laser melting(SLM)-treated parts were systematically studied.It was found that the crack density(area ratio) increases from 0.15% to 0.87% in the XOY plane and from 0.21% to 1.81% in the XOZ plane along with the Zr content increase from 0.024 wt.% to 0.12 wt.% in the original powders.Solidification cracks are formed along the epitaxially grown <001>-oriented columnar grain boundaries in molten pool center.The ultimate tensile strength of Sample 1(0.024 wt.% Zr) is 1113 MPa,and there are dimples in tensile fracture.With an increase in the Zr content to 0.12 wt.%(Sample 2),the ultimate tensile strength of Sample 2 decreases to 610 MPa,and there are numerous original cracks and exposed columnar grain boundaries in tensile fracture.The optimization of printing parameters of Sample 2 considerably increases the ultimate tensile strength by 55.2% to 947 MPa,and the plasticity is greatly improved.展开更多
To find suitable biodegradable materials for implant applications,Mg−6Zn−0.3Mn−xCa(x=0,0.2 and 0.5,wt.%)alloys were prepared by semi-continuous casting followed by hot-extrusion technique.The microstructure and mechan...To find suitable biodegradable materials for implant applications,Mg−6Zn−0.3Mn−xCa(x=0,0.2 and 0.5,wt.%)alloys were prepared by semi-continuous casting followed by hot-extrusion technique.The microstructure and mechanical properties of Mg−6Zn−0.3Mn−xCa alloys were investigated using the optical microscope,scanning electron microscope and tensile testing.Results indicated that minor Ca addition can slightly refine grains of the extruded Mg−6Zn−0.3Mn alloy and improve its strength.When 0.2 wt.%and 0.5 wt.%Ca were added,the grain sizes of the as-extruded alloys were refined from 4.8 to 4.6 and 4.2μm,respectively.Of the three alloys studied,the alloy with 0.5 wt.%Ca exhibits better combined mechanical properties with the ultimate tensile strength and elongation of 334 MPa and 20.3%.The corrosion behaviour,cell viability and antibacterial activities of alloys studied were also evaluated.Increasing Ca content deteriorates the corrosion resistance of alloys due to the increase of amount of effective cathodic sites caused by the formation of more Ca2Mg6Zn3 phases.Cytotoxicity evaluation with L929 cells shows higher cell viability of the Mg−6Zn−0.3Mn−0.5Ca alloy compared to Mg−6Zn−0.3Mn and Mg−6Zn−0.3Mn−0.2Ca alloys.The antibacterial activity against Staphylococcus aureus is enhanced with increasing the Ca content due to its physicochemical and biological performance in bone repairing process.展开更多
The AZ91 D magnesium alloy containing rare earth Gd was prepared in this study, and the effect of semi-solid isothermal heat treatment on the microstructure of the alloy was investigated to obtain an optimum semi-soli...The AZ91 D magnesium alloy containing rare earth Gd was prepared in this study, and the effect of semi-solid isothermal heat treatment on the microstructure of the alloy was investigated to obtain an optimum semi-solid structure. Results show that Gd can refine the microstructure of AZ91 D magnesium alloy, and the optimum semi-solid AZ91 D microstructure can be achieved by adding 1.5wt.% Gd. After treated at 585 °C for 30 min, the well distributed rose-shaped and near-spherical semi-solid microstructures of AZ91D+1.5wt.%Gd alloy can be obtained. The liquid phase of the semi-solid alloy consists of three components, namely, the molten pool, the "entrapped liquid" pool and the liner liquid film which separates two neighbor particles. The solid phase is composed of two phases, the primary α-Mg particles and the α-Mg phase formed in the second stage of solidification. With the increase of holding time, melting which causes the decrease of the primary α-Mg particle size is the dominant mechanism in the initial stage while coalescence and Ostwald ripening tend to be the principles later.展开更多
基金supported by the National Natural Science Foundation of China,No.81871768(to YH)the Natural Science Foundation of Tianjin of China,No.18JCYBJC29600(to HYC)High Level-Hospital Program,Health Commission of Guangdong Province of China,No.HKUSZH201902011(to YH).
文摘Somatosensory evoked potentials(SEPs)have been widely used to assess neurological function in clinical practice.A good understanding of the association between SEP signals and neurological function is helpful for precise diagnosis of impairment location.Previous studies on SEPs have been reported in animal models.However,few studies have reported the relationships between SEP waveforms in animals and those in humans.In this study,we collected normal SEP waveforms and decomposed them into specific time–frequency components(TFCs).Our results showed three stable TFC distribution regions in intact goats and rats and in humans.After we induced spinal cord injury in the animal models,a greater number of small TFC distribution regions were observed in the injured goat and rat groups than in the normal group.Moreover,there were significant correlations(P<0.05)and linear relationships between the main SEP TFCs of the human group and those of the goat and rat groups.A stable TFC distribution of SEP components was observed in the human,goat and rat groups,and the TFC distribution modes were similar between the three groups.Results in various animal models in this study could be translated to future clinical studies based on SEP TFC analysis.Human studies were approved by the Institutional Review Board of the University of Hong Kong/Hospital Authority Hong Kong West Cluster(approval No.UM 05-312 T/975)on December 5,2005.Rat experiments were approved by the Committee on the Use of Live Animals in Teaching and Research of Li Ka Shing Faculty of Medicine of the University of Hong Kong(approval No.CULART 2912-12)on January 28,2013.Goat experiments were approved by the Animal Ethics Committee of Affiliated Hospital of Guangdong Medical University(approval No.GDY2002132)on March 5,2018.
基金We appreciate the financial support from the National Natural Science Foundation of China(22272150,22102145)the Major Program of Zhejiang Provincial Natural Science Foundation(LD22B030002)+3 种基金Zhejiang Provincial Ten Thousand Talent Program(2021R51009)Zhejiang Provincial Natural Science Foundation of China(LQ23B030006,LY22B030012)Shandong Provincial Natural Science Foundation of China(2020MB053)the Fundamental Research Funds for the Central Universities(DUT22RC(3)084).
文摘Modulating electronic structures of single-atom metal cocatalysts is vital for highly active photoreduction of CO_(2),and it's especially challenging to develop a facile method to modify the dispersion of atomical photocatalytic sites.We herein report an ion-loading pyrolysis route to in-situ anchor Pd single atoms as well as twinned Pd nanoparticles on ultra-thin graphitic carbon nitride nanosheets(PdTP/Pd_(SA)-CN)for high-efficiency photoreduction of CO_(2).The anchored Pd twinned nanoparticles donate electrons to adjacent single Pd–N_(4) sites through the carbon nitride networks,and the optimized PdTP/Pd_(SA)-CN photocatalyst exhibits a CO evolution rate up to 46.5μmol g^(-1) h^(-1) with nearly 100%selectivity.As revealed by spectroscopic and theoretical analyses,the superior photocatalytic activity is attributed to the lowered desorption barrier of carbonyl species at electron-enriched Pd single atoms,together with the improved efficiencies of light-harvesting and charge separation/transport.This work has demonstrated the engineering of the electron density of single active sites with twinned metal nanoparticles assisted by strong electronic interaction with the support of the atomic metal,and unveiled the underlying mechanism for expedited photocatalytic efficiency.
基金financially supported by the National Natural Science Foundation of China(Nos.52120105007 and 52374062)the Innovation Fund Project for Graduate Students of China University of Petroleum(East China)supported by“the Fundamental Research Funds for the Central Universities”(23CX04047A)。
文摘A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores.High viscosity/viscoelasticity of the fracturing fluid was required to maintain excellent proppant suspension properties before gelling.Taking into account both the cost and the potential damage to reservoirs,polymers with lower concentrations and molecular weights are generally preferred.In this work,the supramolecular action was integrated into the polymer,resulting in significant increases in the viscosity and viscoelasticity of the synthesized supramolecular polymer system.The double network gel,which is formed by the combination of the supramolecular polymer system and a small quantity of Zr-crosslinker,effectively resists temperature while minimizing permeability damage to the reservoir.The results indicate that the supramolecular polymer system with a molecular weight of(268—380)×10^(4)g/mol can achieve the same viscosity and viscoelasticity at 0.4 wt%due to the supramolecular interaction between polymers,compared to the 0.6 wt%traditional polymer(hydrolyzed polyacrylamide,molecular weight of 1078×10^(4)g/mol).The supramolecular polymer system possessed excellent proppant suspension properties with a 0.55 cm/min sedimentation rate at 0.4 wt%,whereas the0.6 wt%traditional polymer had a rate of 0.57 cm/min.In comparison to the traditional gel with a Zrcrosslinker concentration of 0.6 wt%and an elastic modulus of 7.77 Pa,the double network gel with a higher elastic modulus(9.00 Pa)could be formed only at 0.1 wt%Zr-crosslinker,which greatly reduced the amount of residue of the fluid after gel-breaking.The viscosity of the double network gel was66 m Pa s after 2 h shearing,whereas the traditional gel only reached 27 m Pa s.
基金financially supported by the Project funded by China Postdoctoral Science Foundation (NO.2022M723500)the National Natural Science Foundation of China (NO.52204069)the Sinopec Science and Technology Project of China (NO.P22015)。
文摘High content of asphaltenes and waxes leads to the high pour point and the poor flowability of heavy oil,which is adverse to its efficient development and its transportation in pipe.Understanding the interaction mechanism between asphaltene-wax is crucial to solve these problems,but it is still unclear.In this paper,molecular dynamics simulation was used to investigate the interaction between asphaltenewax and its effects on the crystallization behavior of waxes in heavy oil.Results show that molecules in pure wax are arranged in a paralleled geometry.But wax molecules in heavy oil,which are close to the surface of asphaltene aggregates,are bent and arranged irregularly.When the mass fraction of asphaltenes in asphaltene-wax system(ω_(asp))is 0-25 wt%,the attraction among wax molecules decreases and the bend degree of wax molecules increases with the increase ofω_(asp).Theω_(asp)increases from 0 to 25 wt%,and the attraction between asphaltene-wax is stronger than that among waxes.This causes that the wax precipitation point changes from 353 to 333 K.While theω_(asp)increases to 50 wt%,wax molecules are more dispersed owing to the steric hindrance of asphaltene aggregates,and the interaction among wax molecules transforms from attraction to repulsion.It causes that the ordered crystal structure of waxes can't be formed at normal temperature.Simultaneously,the asphaltene,with the higher molecular weight or the more hetero atoms,has more obvious inhibition to the formation of wax crystals.Besides,resins also have an obvious inhibition on the wax crystal due to the formation of asphalteneresin aggregates with a larger radius.Our results reveal the interaction mechanism between asphaltene-wax,and provide useful guidelines for the development of heavy oil.
基金supported by Stability Supports Research Project of Treasury Department(No.197801)Talent Fund of CIAE(No.219213)。
文摘Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were deposited on Zr alloy substrates using multi-arc ion plating technology,and scratch tests were subsequently conducted to estimate the adhesion property of the coatings.The results indicated that Cr coatings had better adhesion strength than HEA coatings,and the HEA coatings showed brittleness.The special quasi-random structure approach was used to build HEA models,and Cr/Zr and HEA/Zr interface models were employed to investigate the cohesion between the coatings and Zr substrate using first-principles calculations.The calculated interface energies showed that the cohesion between the Cr coating and the Zr substrate was stronger than that of the HEA coating with Zr.In contrary to Al or Si in the HEA coating,Cr,Nb,and Ti atoms binded strongly with Zr substrate.Based on the calculated elastic constants,it was found that low Cr and high Al content decreased the mechanical performances of HEA coatings.Finally,this study demonstrated the utilization of a combined approach involving first-principles calculations and experimental studies for future HEA coating development.
文摘Multi-label image classification is recognized as an important task within the field of computer vision,a discipline that has experienced a significant escalation in research endeavors in recent years.The widespread adoption of convolutional neural networks(CNNs)has catalyzed the remarkable success of architectures such as ResNet-101 within the domain of image classification.However,inmulti-label image classification tasks,it is crucial to consider the correlation between labels.In order to improve the accuracy and performance of multi-label classification and fully combine visual and semantic features,many existing studies use graph convolutional networks(GCN)for modeling.Object detection and multi-label image classification exhibit a degree of conceptual overlap;however,the integration of these two tasks within a unified framework has been relatively underexplored in the existing literature.In this paper,we come up with Object-GCN framework,a model combining object detection network YOLOv5 and graph convolutional network,and we carry out a thorough experimental analysis using a range of well-established public datasets.The designed framework Object-GCN achieves significantly better performance than existing studies in public datasets COCO2014,VOC2007,VOC2012.The final results achieved are 86.9%,96.7%,and 96.3%mean Average Precision(mAP)across the three datasets.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFA140220 and 2023YFA1406303)the State Key Project of Zhejiang Province(Grant No.LZ22A040007)+2 种基金the National Natural Science Foundation of China(Grant Nos.U23A20580,12174331,12204159,and 12274364)the Key R&D Program of Zhejiang Province,China(Grant No.2021C01002)the Bridging Grant(Grant No.BG11-072020)with China,Japan,South Korea and ASEAN region funded by the Swiss State Secretariat for Education,Research and Innovation。
文摘The locally noncentrosymmetric heavy fermion superconductor CeRh_(2)As_(2) has attracted considerable interests due to its rich superconducting phases,accompanied by possible quadrupole density wave and pronounced antiferromagnetic excitations.To understand the underlying physics,here we report measurements from highresolution angle-resolved photoemission.Our results reveal fine splittings of the conduction bands related to the locally noncentrosymmetric structure,as well as a quasi-two-dimensional Fermi surface(FS)with strong 4f contributions.The FS shows signs of nesting with an in-plane vector q_(1)=(π/α,π/α),which is facilitated by the heavy bands nearˉ𝑋arising from the characteristic conduction-X hybridization.The FS nesting provides a natural explanation for the observed antiferromagnetic spin fluctuations at(π/α,π/α),which might be the driving force for its unconventional superconductivity.Our experimental results can be reasonably explained by density functional theory plus dynamical mean field theory calculations,which can capture the strong correlation effects.Our study not only provides spectroscopic signature of the key factors underlying the field-induced superconducting transition,but also uncovers the critical role of FS nesting and lattice Kondo effect in the underlying magnetic fluctuations.
文摘Background: Aortic dissection (AD) is one of the common causes of fatal chest pain in emergency medicine. The main and most common clinical manifestation is pain, with about 90% of patients experiencing sudden persistent, tearing or cutting-like pain in the chest or back. However, there have also been reports of myocardial infarction, heart failure, renal failure, syncope, shock, stroke, paraplegia and other cases. Clinical misdiagnosis is common. Aim: Alert clinicians to aortic dissection with shock and chest tightness as the main clinical presentations. Case Presentation: Report on two cases of aortic dissection with syncope and shock as the main manifestations. Conclusion: Aortic dissection is a highly dangerous cardiovascular emergency with a high mortality rate. In clinical practice, awareness of the clinical manifestations of aortic dissection should be increased. Careful inquiry about medical history, attention to atypical clinical presentations of aortic dissection, thorough physical examination, and comprehensive diagnostic evaluation can improve the success rate of diagnosing aortic dissection.
文摘Culture teaching is an inseparable part of International Chinese Language Education,and it has great significance in international Chinese language teaching.Students can enhance their interest in Chinese language learning and improve their learning effect through understanding the excellent traditional Chinese culture,at the same time,culture teaching can help to disseminate the Chinese culture and promote the development of a multicultural world.Taking the teaching of Chinese New Year culture as an example,we analyze the current teaching materials involving Chinese New Year culture with high popularity and acceptance,put forward effective teaching methods matching the feasibility of teaching Chinese New Year culture,and then present the specific teaching design of Chinese New Year culture,in order to provide references for the teaching of culture in International Chinese Language Education.
文摘Based on the Dikken analytical calculation method of wellbore pressure loss under single-phase fluid and turbulent flow conditions, the correlation model between horizontal well output and horizontal section length and horizontal section distributed pressure difference is constructed. The influence degree of wellbore pressure loss on daily oil production of horizontal well, horizontal section pressure and production effect of horizontal well under different horizontal well lengths is analyzed, which provides certain reference for the design of horizontal well length and well layout.
基金supported by the National Natural Science Foundation of China(52006151)the National Key R&D Program of China(2022YFC3003100)the Civil Aircraft Scientific Research Project of the Industry and Information Technology(BB2320000045,DD2320009001).
基金supported by the National Natural Science Foundation of China,No.81672171(to XY),81330042(to SQF),81620108018(to SQF),81772342the State Key Laboratory of Medicinal Chemical Biology(Nankai University),China,No.2017027
文摘Ferroptosis is an iron-dependent novel cell death pathway. Deferoxamine, a ferroptosis inhibitor, has been reported to promote spinal cord injury repair. It has yet to be clarified whether ferroptosis inhibition represents the mechanism of action of Deferoxamine on spinal cord injury recovery. A rat model of Deferoxamine at thoracic 10 segment was established using a modified Allen's method. Ninety 8-week-old female Wistar rats were used. Rats in the Deferoxamine group were intraperitoneally injected with 100 mg/kg Deferoxamine 30 minutes before injury. Simultaneously, the Sham and Deferoxamine groups served as controls. Drug administration was conducted for 7 consecutive days. The results were as follows:(1) Electron microscopy revealed shrunken mitochondria in the spinal cord injury group.(2) The Basso, Beattie and Bresnahan locomotor rating score showed that recovery of the hindlimb was remarkably better in the Deferoxamine group than in the spinal cord injury group.(3) The iron concentration was lower in the Deferoxamine group than in the spinal cord injury group after injury.(4) Western blot assay revealed that, compared with the spinal cord injury group, GPX4, xCT, and glutathione expression was markedly increased in the Deferoxamine group.(5) Real-time polymerase chain reaction revealed that, compared with the Deferoxamine group, mRNA levels of ferroptosis-related genes Acyl-CoA synthetase family member 2(ACSF2) and iron-responsive element-binding protein 2(IREB2) were up-regulated in the Deferoxamine group.(6) Deferoxamine increased survival of neurons and inhibited gliosis. These findings confirm that Deferoxamine can repair spinal cord injury by inhibiting ferroptosis. Targeting ferroptosis is therefore a promising therapeutic approach for spinal cord injury.
基金the financial supports from the Major Project of Science and Technology of Gansu Province,China(No.17ZD2GC011)the Hongliu First-class Discipline Construction Plan of Lanzhou University of Technology,China(No.CGZH001).
文摘Two batches of commercial IN738LC alloy powders with different Zr contents were printed under the same parameters.The influences of Zr content(0.024 wt.% and 0.12 wt.%,respectively) in powders on crack density,distribution,formation mechanism and mechanical properties of selective laser melting(SLM)-treated parts were systematically studied.It was found that the crack density(area ratio) increases from 0.15% to 0.87% in the XOY plane and from 0.21% to 1.81% in the XOZ plane along with the Zr content increase from 0.024 wt.% to 0.12 wt.% in the original powders.Solidification cracks are formed along the epitaxially grown <001>-oriented columnar grain boundaries in molten pool center.The ultimate tensile strength of Sample 1(0.024 wt.% Zr) is 1113 MPa,and there are dimples in tensile fracture.With an increase in the Zr content to 0.12 wt.%(Sample 2),the ultimate tensile strength of Sample 2 decreases to 610 MPa,and there are numerous original cracks and exposed columnar grain boundaries in tensile fracture.The optimization of printing parameters of Sample 2 considerably increases the ultimate tensile strength by 55.2% to 947 MPa,and the plasticity is greatly improved.
基金the financial supports from the Natural Science Foundation of Shanxi Province, China (201901D211310)the National Natural Science Foundation of China (52071227)+2 种基金the Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi, China (TSTAP)Science and Technology Major Projects of Shanxi Province, China (20191102004, 201903D111008)the Central Special Funds Guiding the Development of Local Science and Technology, China (YDZX20181400002967)
文摘To find suitable biodegradable materials for implant applications,Mg−6Zn−0.3Mn−xCa(x=0,0.2 and 0.5,wt.%)alloys were prepared by semi-continuous casting followed by hot-extrusion technique.The microstructure and mechanical properties of Mg−6Zn−0.3Mn−xCa alloys were investigated using the optical microscope,scanning electron microscope and tensile testing.Results indicated that minor Ca addition can slightly refine grains of the extruded Mg−6Zn−0.3Mn alloy and improve its strength.When 0.2 wt.%and 0.5 wt.%Ca were added,the grain sizes of the as-extruded alloys were refined from 4.8 to 4.6 and 4.2μm,respectively.Of the three alloys studied,the alloy with 0.5 wt.%Ca exhibits better combined mechanical properties with the ultimate tensile strength and elongation of 334 MPa and 20.3%.The corrosion behaviour,cell viability and antibacterial activities of alloys studied were also evaluated.Increasing Ca content deteriorates the corrosion resistance of alloys due to the increase of amount of effective cathodic sites caused by the formation of more Ca2Mg6Zn3 phases.Cytotoxicity evaluation with L929 cells shows higher cell viability of the Mg−6Zn−0.3Mn−0.5Ca alloy compared to Mg−6Zn−0.3Mn and Mg−6Zn−0.3Mn−0.2Ca alloys.The antibacterial activity against Staphylococcus aureus is enhanced with increasing the Ca content due to its physicochemical and biological performance in bone repairing process.
基金financially supported by the Natural Science Foundation of Jiangxi,China(grant No.:20142BAB216015)Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials,China(grant No.:2013-KLP-07)
文摘The AZ91 D magnesium alloy containing rare earth Gd was prepared in this study, and the effect of semi-solid isothermal heat treatment on the microstructure of the alloy was investigated to obtain an optimum semi-solid structure. Results show that Gd can refine the microstructure of AZ91 D magnesium alloy, and the optimum semi-solid AZ91 D microstructure can be achieved by adding 1.5wt.% Gd. After treated at 585 °C for 30 min, the well distributed rose-shaped and near-spherical semi-solid microstructures of AZ91D+1.5wt.%Gd alloy can be obtained. The liquid phase of the semi-solid alloy consists of three components, namely, the molten pool, the "entrapped liquid" pool and the liner liquid film which separates two neighbor particles. The solid phase is composed of two phases, the primary α-Mg particles and the α-Mg phase formed in the second stage of solidification. With the increase of holding time, melting which causes the decrease of the primary α-Mg particle size is the dominant mechanism in the initial stage while coalescence and Ostwald ripening tend to be the principles later.