In order to develop a new strategy to deposit nano-particle sized water oxidation catalyst based on earth abundant element to the photoanode in a photoelectrochemical cell for water splitting, Co;O;as water oxidation ...In order to develop a new strategy to deposit nano-particle sized water oxidation catalyst based on earth abundant element to the photoanode in a photoelectrochemical cell for water splitting, Co;O;as water oxidation catalyst was prepared and subsequently modified by 3-aminopropyltriethoxysilane. The amino functionalized Co;O;catalyst was carefully characterized and then integrated to the ruthenium dye sensitized photoelectrode through fast Schiff base reaction. Cyclic voltammetry experiments in the dark confirmed that the modified Co;O;catalyst was still active toward water oxidation, which could be initiated by oxidation of the ruthenium photosensitizer. Under visible light irradiation, incorporation of the modified Co;O;catalyst resulted in dramatic enhancement of the transient photocurrent density for the photoanode, which was 8 times higher than that of without Co;O;catalyst.展开更多
CdS sensitized NiO electrode was used as the photoactive cathode in a photoelectrochemical cell for water splitting,avoiding the use of a sacrificial electron donor.Photocurrent increment under visible light irradiati...CdS sensitized NiO electrode was used as the photoactive cathode in a photoelectrochemical cell for water splitting,avoiding the use of a sacrificial electron donor.Photocurrent increment under visible light irradiation was observed after integration of[Co(dmgH)_2(4-Me-py)Cl](1) to the photocathode,suggesting 1 could accept electrons from photoexcited CdS for water reduction and NiO could move the holes in the valence band of CdS to anode for water oxidation.展开更多
基金supported by the Program for Innovation Research of Science in Harbin Institute of Technology(PIRS of HIT nos.A201418 and Q201508)
文摘In order to develop a new strategy to deposit nano-particle sized water oxidation catalyst based on earth abundant element to the photoanode in a photoelectrochemical cell for water splitting, Co;O;as water oxidation catalyst was prepared and subsequently modified by 3-aminopropyltriethoxysilane. The amino functionalized Co;O;catalyst was carefully characterized and then integrated to the ruthenium dye sensitized photoelectrode through fast Schiff base reaction. Cyclic voltammetry experiments in the dark confirmed that the modified Co;O;catalyst was still active toward water oxidation, which could be initiated by oxidation of the ruthenium photosensitizer. Under visible light irradiation, incorporation of the modified Co;O;catalyst resulted in dramatic enhancement of the transient photocurrent density for the photoanode, which was 8 times higher than that of without Co;O;catalyst.
基金supported by the Fundamental Research Funds for the Central Universities(No.HIT.IBRSEM.A.201409)the Program for Innovation Research of Science in Harbin Institute of Technology(PIRS of HIT No.A201418,A201416)+1 种基金the National Natural Science Foundation of China(Nos.21171044 and21371040)the National key Basic Research Program of China(973 Program,No.2013CB632900)
文摘CdS sensitized NiO electrode was used as the photoactive cathode in a photoelectrochemical cell for water splitting,avoiding the use of a sacrificial electron donor.Photocurrent increment under visible light irradiation was observed after integration of[Co(dmgH)_2(4-Me-py)Cl](1) to the photocathode,suggesting 1 could accept electrons from photoexcited CdS for water reduction and NiO could move the holes in the valence band of CdS to anode for water oxidation.