Wellbore drilling operations frequently entail the combination of a wide range of variables. This is underpinned by the numerous factors that must be considered in order to ensure safety and productivity. The heteroge...Wellbore drilling operations frequently entail the combination of a wide range of variables. This is underpinned by the numerous factors that must be considered in order to ensure safety and productivity. The heterogeneity and sometimes unpredictable behaviour of underground systems increases the sensitivity of drilling activities. Quite often the operating parameters are set to certify effective and efficient working processes. However, failings in the management of drilling and operating conditions sometimes result in catastrophes such as well collapse or fluid loss. This study investigates the hypothesis that optimising drilling parameters, for instance mud pressure, is crucial if the margin of safe operating conditions is to be properly defined. This was conducted via two main stages: first a deterministic analysis--where the operating conditions are predicted by conventional modelling procedures--and then a probabilistic analysis via stochastic simulations--where a window of optimised operation conditions can be obtained. The outcome of additional stochastic analyses can be used to improve results derived from deterministic models. The incorporation of stochastic techniques in the evaluation of wellbore instability indicates that margins of the safe mud weight window are adjustable and can be extended considerably beyond the limits of deterministic predictions. The safe mud window is influenced and hence can also be amended based on the degree of uncertainty and the permissible level of confidence. The refinement of results from deterministic analyses by additional stochastic simulations is vital if a more accurate and reliable representation of safe in situ and operating conditions is to be obtained during wellbore operations.展开更多
Equilibrium geometries, stabilities, and electronic properties of small TimZrn(n + m ≤ 5) clusters were investigated using the density functional method. The ground states were determined, and it was found that th...Equilibrium geometries, stabilities, and electronic properties of small TimZrn(n + m ≤ 5) clusters were investigated using the density functional method. The ground states were determined, and it was found that the larger clusters and those consisting of more Zr atoms are more stable. The electronic properties of the clusters were discussed based on HOMO-LUMO gaps, vertical ionization potentials(VIP), and vertical electron affinities(VEA). Furthermore, we studied the interactions between those clusters and molecular hydrogen, and found that in all the cases dissociative chemisorptions occurred. According to the chemisorption energies, the pure Zr clusters are relatively more active towards H2 when compared with the others except Ti3Zr, which shows the highest activity. The magnetic moments of TimZrn and TimZrnH2 were also compared, and the results show that the hydrogenated clusters have the same or decreased total magnetic moments with respect to the bare clusters except for Ti3Zr2.展开更多
Vehicular Ad hoc Networks (VANETs) which is a special form of Mobile Ad hoc Networks (MANETs) has promising application prospects in the future. Due to the rapid changing of topology structure, how to find a route whi...Vehicular Ad hoc Networks (VANETs) which is a special form of Mobile Ad hoc Networks (MANETs) has promising application prospects in the future. Due to the rapid changing of topology structure, how to find a route which can guarantee Quality of Service (QoS) is an important issue in VANETs. This paper presents an improved Greedy Perimeter Stateless Routing (GPSR) protocol based on our proposed next-hop node selection mechanism. Firstly, we define the link reliability in two cases which take the movement direction angle between two vehicles into consideration. Then we propose a next-hop node selection mechanism based on a weighted function which consists of link reliability between the sender node and next-hop candidate node, distance between next-hop candidate node and the destination, movement direction angle of next-hop candidate node. At last, an improved GPSR protocol is proposed based on the next-hop node selection mechanism. Simulation results are presented to evaluate the performance of the improved GPSR protocol, which shows that the performance including packet delivery ratio and average end-to-end delay of the proposed protocol is better in some situations.展开更多
基金supported by grants from the“Basic research Projects”from Qinghai Science and Technology Department of China(2019-ZJ-7059)“Basic research Projects”from Qinghai Science and Technology Department of China(2016-ZJ-924Q)。
文摘Wellbore drilling operations frequently entail the combination of a wide range of variables. This is underpinned by the numerous factors that must be considered in order to ensure safety and productivity. The heterogeneity and sometimes unpredictable behaviour of underground systems increases the sensitivity of drilling activities. Quite often the operating parameters are set to certify effective and efficient working processes. However, failings in the management of drilling and operating conditions sometimes result in catastrophes such as well collapse or fluid loss. This study investigates the hypothesis that optimising drilling parameters, for instance mud pressure, is crucial if the margin of safe operating conditions is to be properly defined. This was conducted via two main stages: first a deterministic analysis--where the operating conditions are predicted by conventional modelling procedures--and then a probabilistic analysis via stochastic simulations--where a window of optimised operation conditions can be obtained. The outcome of additional stochastic analyses can be used to improve results derived from deterministic models. The incorporation of stochastic techniques in the evaluation of wellbore instability indicates that margins of the safe mud weight window are adjustable and can be extended considerably beyond the limits of deterministic predictions. The safe mud window is influenced and hence can also be amended based on the degree of uncertainty and the permissible level of confidence. The refinement of results from deterministic analyses by additional stochastic simulations is vital if a more accurate and reliable representation of safe in situ and operating conditions is to be obtained during wellbore operations.
基金Project supported by the Scientific Research Plan Foundation of Sichuan Education Department of China(Grant No.2014JY0072)
文摘Equilibrium geometries, stabilities, and electronic properties of small TimZrn(n + m ≤ 5) clusters were investigated using the density functional method. The ground states were determined, and it was found that the larger clusters and those consisting of more Zr atoms are more stable. The electronic properties of the clusters were discussed based on HOMO-LUMO gaps, vertical ionization potentials(VIP), and vertical electron affinities(VEA). Furthermore, we studied the interactions between those clusters and molecular hydrogen, and found that in all the cases dissociative chemisorptions occurred. According to the chemisorption energies, the pure Zr clusters are relatively more active towards H2 when compared with the others except Ti3Zr, which shows the highest activity. The magnetic moments of TimZrn and TimZrnH2 were also compared, and the results show that the hydrogenated clusters have the same or decreased total magnetic moments with respect to the bare clusters except for Ti3Zr2.
文摘Vehicular Ad hoc Networks (VANETs) which is a special form of Mobile Ad hoc Networks (MANETs) has promising application prospects in the future. Due to the rapid changing of topology structure, how to find a route which can guarantee Quality of Service (QoS) is an important issue in VANETs. This paper presents an improved Greedy Perimeter Stateless Routing (GPSR) protocol based on our proposed next-hop node selection mechanism. Firstly, we define the link reliability in two cases which take the movement direction angle between two vehicles into consideration. Then we propose a next-hop node selection mechanism based on a weighted function which consists of link reliability between the sender node and next-hop candidate node, distance between next-hop candidate node and the destination, movement direction angle of next-hop candidate node. At last, an improved GPSR protocol is proposed based on the next-hop node selection mechanism. Simulation results are presented to evaluate the performance of the improved GPSR protocol, which shows that the performance including packet delivery ratio and average end-to-end delay of the proposed protocol is better in some situations.