Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer’s disease.Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases,including Parkinson’s and Hunting...Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer’s disease.Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases,including Parkinson’s and Huntington’s diseases,however,the effect of Citri Reticulatae Semen on Alzheimer’s disease remains unelucidated.In the current study,the anti-apoptotic and autophagic roles of Citri Reticulatae Semen extract on amyloid-beta-induced apoptosis in PC12 cells were first investigated.Citri Reticulatae Semen extract protected PC12 cells from amyloid-beta-induced apoptosis by attenuating the Bax/Bcl-2 ratio via activation of autophagy.In addition,Citri Reticulatae Semen extract was confirmed to bind amyloid-beta as revealed by biolayer interferometry in vitro,and suppress amyloid-beta-induced pathology such as paralysis,in a transgenic Caenorhabditis elegans in vivo model.Moreover,genetically defective Caenorhabditis elegans further confirmed that the neuroprotective effect of Citri Reticulatae Semen extract was autophagy-dependent.Most importantly,Citri Reticulatae Semen extract was confirmed to improve cognitive impairment,neuronal injury and amyloid-beta burden in 3×Tg Alzheimer’s disease mice.As revealed by both in vitro and in vivo models,these results suggest that Citri Reticulatae Semen extract is a potential natural therapeutic agent for Alzheimer’s disease via its neuroprotective autophagic effects.展开更多
The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective meth...The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks.展开更多
The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of th...The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.展开更多
Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and ...Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.展开更多
Ophthalmology is a subject that highly depends on imaging examination.Artificial intelligence(AI)technology has great potential in medical imaging analysis,including image diagnosis,classification,grading,guiding trea...Ophthalmology is a subject that highly depends on imaging examination.Artificial intelligence(AI)technology has great potential in medical imaging analysis,including image diagnosis,classification,grading,guiding treatment and evaluating prognosis.The combination of the two can realize mass screening of grass-roots eye health,making it possible to seek medical treatment in the mode of“first treatment at the grass-roots level,two-way referral,emergency and slow treatment,and linkage between the upper and lower levels”.On the basis of summarizing the AI technology carried out by scholars and their teams all over the world in the field of ophthalmology,quite a lot of studies have confirmed that machine learning can assist in diagnosis,grading,providing optimal treatment plans and evaluating prognosis in corneal and conjunctival diseases,ametropia,lens diseases,glaucoma,iris diseases,etc.This paper systematically shows the application and progress of AI technology in common anterior segment ocular diseases,the current limitations,and prospects for the future.展开更多
Dear Editor,We described an innovative“single self-leading suture technique”for repairing iridodialysis.Instead of moving the needle forth and back,our method is easier to manipulate in the narrow surgical space bet...Dear Editor,We described an innovative“single self-leading suture technique”for repairing iridodialysis.Instead of moving the needle forth and back,our method is easier to manipulate in the narrow surgical space between the cornea and lens,which will decrease the unnecessary complications related to iatrogenic injury.We provide an economical friendly and less time-taking method,which improves the suture accuracy.展开更多
YTB block in Sichuan basin is a favorable area to exploit oil and gas in shallow tight rock. 3D seismic project of this zone has two characteristics. Firstly, it has high requirements for the tolerance rate of the con...YTB block in Sichuan basin is a favorable area to exploit oil and gas in shallow tight rock. 3D seismic project of this zone has two characteristics. Firstly, it has high requirements for the tolerance rate of the construction process and the acquisition of high signal-to-noise ratio seismic data;Second, there are widely obstacles and noises that lead to difficult acquisition construction organization. In acquisition practice, high signal-to-noise ratio seismic data was obtained by reasonable design of construction scheme, optimization of excitation parameters, improvement of receiving conditions and optimization of obstacle crossing observation system. .展开更多
Increasing the production and utilization of shale gas is of great significance for building a clean and low-carbon energy system.Sharp decline of gas production has been widely observed in shale gas reservoirs.How to...Increasing the production and utilization of shale gas is of great significance for building a clean and low-carbon energy system.Sharp decline of gas production has been widely observed in shale gas reservoirs.How to forecast shale gas production is still challenging due to complex fracture networks,dynamic fracture properties,frac hits,complicated multiphase flow,and multi-scale flow as well as data quality and uncertainty.This work develops an integrated framework for evaluating shale gas well production based on data-driven models.Firstly,a comprehensive dominated-factor system has been established,including geological,drilling,fracturing,and production factors.Data processing and visualization are required to ensure data quality and determine final data set.A shale gas production evaluation model is developed to evaluate shale gas production levels.Finally,the random forest algorithm is used to forecast shale gas production.The prediction accuracy of shale gas production level is higher than 95%based on the shale gas reservoirs in China.Forty-one wells are randomly selected to predict cumulative gas production using the optimal regression model.The proposed shale gas production evaluation frame-work overcomes too many assumptions of analytical or semi-analytical models and avoids huge computation cost and poor generalization for numerical modelling.展开更多
Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vit...Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vitally important for reservoir effective development.Well interference has been historically investigated by pressure transient analysis,while it has shown that rate transient analysis has great potential in well interference diagnosis.However,the impact of complex fracture networks(CFNs)on rate transient behavior of parent well and child well in unconventional reservoirs is still not clear.To further investigate,this paper develops an integrated approach combining pressure and rate transient analysis for well interference diagnosis considering CFNs.To perform multi-well simulation considering CFNs,non-intrusive embedded discrete fracture model approach was applied for coupling fracture with reservoir models.The impact of CFN including natural fractures and frac-hits on pressure and rate transient behavior in multi-well system was investigated.On a logelog plot,interference flow and compound linear flow are two new flow regimes caused by nearby producers.When both NFs and frac-hits are present in the reservoir,frac-hits have a greater impact on well#1 which contains frac-hits,and NFs have greater impact on well#3 which does not have frac-hits.For all well producing circumstances,it might be challenging to see divergence during pseudosteady state flow brought on by frac-hits on the logelog plot.Besides,when NFs occur,reservoir depletion becomes noticeable in comparison to frac-hits in pressure distribution.Application of this integrated approach demonstrates that it works well to characterize the well interference among different multi-fractured horizontal wells in a well pad.Better reservoir evaluation can be acquired based on the new features observed in the novel model,demonstrating the practicability of the proposed approach.The findings of this study can help for better evaluating well interference degree in multi-well systems combing PTA and RTA,which can reduce the uncertainty and improve the accuracy of the well interference analysis based on both field pressure and rate data.展开更多
The lithium-sulfur(Li-S)battery with an ultrahigh theoretical energy density has emerged as a promising rechargeable battery system.However,the practical applications of Li-S batteries are severely plagued by the slug...The lithium-sulfur(Li-S)battery with an ultrahigh theoretical energy density has emerged as a promising rechargeable battery system.However,the practical applications of Li-S batteries are severely plagued by the sluggish reaction kinetics of sulfur species and notorious shuttling of soluble lithium polysulfides(LiPSs)intermediates that result in low sulfur utilization.The introduction of functional layers on separators has been considered as an effective strategy to improve the sulfur utilization in Li-S batteries by achieving effective regulation of LiPSs.Herein,a promising self-assembly strategy is proposed to achieve the low-cost fabrication of hollow and hierarchically porous Fe_(3)O_(4)nanospheres(p-Fe_(3)O_(4)-NSs)assembled by numerous extremely-small primary nanocrystals as building blocks.The rationally-designed p-Fe_(3)O_(4)-NSs are utilized as a multifunctional layer on the separator with highly efficient trapping and conversion features toward LiPSs.Results demonstrate that the nanostructured p-Fe_(3)O_(4)-NSs provide chemical adsorption toward LiPSs and kinetically promote the mutual transformation between LiPSs and Li_(2)S_(2)/Li_(2)S during cycling,thus inhibiting the LiPSs shuttling and boosting the redox reaction kinetics via a chemisorption-catalytic conversion mechanism.The enhanced wettability of the p-Fe_(3)O_(4)-NSs-based separator with the electrolyte enables fast transportation of lithium ions.Benefitting from these alluring properties,the functionalized separator with p-Fe_(3)O_(4)-NSs endows the battery with an admirable rate performance of 877 mAh g^(−1)at 2 C,an ultra-durable cycling performance of up to 2176 cycles at 1 C,and a promising areal capacity of 4.55 mAh cm^(−2)under high-sulfur-loading and lean-electrolyte conditions(4.29 mg cm^(−2),electrolyte/ratio:8μl mg^(−1)).This study will offer fresh insights on the rational design and low-cost fabrication of multifunctional separator to strengthen electrochemical reaction kinetics by regulating LiPSs conversion for developing efficient and long-life Li-S batteries.展开更多
目的:整体把握近20年国内外认知障碍照护研究热点及其差异,为国内认知障碍照护研究提供思路和方向。方法:检索Web of Science核心合集和CNKI数据库中2003年至2022年收录的相关文献,运用CiteSpace分析软件对认知障碍照护领域国家分布、...目的:整体把握近20年国内外认知障碍照护研究热点及其差异,为国内认知障碍照护研究提供思路和方向。方法:检索Web of Science核心合集和CNKI数据库中2003年至2022年收录的相关文献,运用CiteSpace分析软件对认知障碍照护领域国家分布、发文量、研究机构、研究作者、主题识别和热点关键词等进行可视化分析。结果:当前认知障碍照护研究主要集中在发达国家;国际研究主要集中在综合性的大学,国内研究主要集中在护理学院院系;通过关键词聚类图谱分析,在国际研究领域得出照护技能方法、照顾者研究、整合照顾、干预、社会支持等研究热点,在国内研究得出照顾者负担、量表使用、长期照护体系、干预和精神症状管理等研究热点。结论:国际认知障碍照护研究热点对国内相关领域研究具有启示作用,建立政府主导、多部门联动的照护服务体系,健全长期照护服务需求评估制度和监督制度。从整合视角出发,协调多方资源,为认知障碍提供连续性高质量的服务;建立认知障碍风险评估模型和早期筛查及干预措施;尝试设计医院、社区、家庭和机构四元联动的整合照顾模式,以推进我国认知障碍照护事业的发展。展开更多
A novel experimental method is proposed for observing plasma dynamics subjected to magnetic fields based on a newly developed cylindrical theta-pinch device.By measuring simultaneously the temporal profiles of multipl...A novel experimental method is proposed for observing plasma dynamics subjected to magnetic fields based on a newly developed cylindrical theta-pinch device.By measuring simultaneously the temporal profiles of multiple parameters including the drive current,luminosity,plasma density,and plasma temperature,it provides a basis for observing the plasma dynamics of the theta pinch,such as shock transport and magnetohydrodynamic instability.We show that the plasma evolution can be distinguished as three phases.First,in the radial implosion phase,the trajectories of the current sheath and shock wave are ascertained by combining experimental data with a snowplow model(Lee model)in a self-consistent way.Second,in the axial flow phase,we demonstrate that m=0(sausage)instability associated with the plasma axial flow suppresses the plasma end-loss.Third,in the newly observed anomalous heating phase,the lower-hybrid-drift instability may develop near the current sheath,which induces anomalous resistivity and enhanced plasma heating.The present experimental data and novel method offer better understanding of plasma dynamics in the presence of magnetic fields,thereby providing important support for relevant research in magneto-inertial fusion.展开更多
Renewable energy exploitation is among the development strategies set by the government of Rwanda on the roadmap to 2023/2024 universal electricity access and theUnitedNations plans by 2030.Numerous previous studies o...Renewable energy exploitation is among the development strategies set by the government of Rwanda on the roadmap to 2023/2024 universal electricity access and theUnitedNations plans by 2030.Numerous previous studies oncleanenergy technologies inRwandahavemostly focusedonhouseholds’usagebut there are currentlynostudies describing the feasibility of clean energy technologies for financial institutions.The skepticism on renewable energy in Africa was previously reported by some personnel.Having realized that most SACCOs(Savings and Credit Co-Operatives)in Rwanda use diesel technology for backup/emergency electricity supply,taking consideration of abundant solar resources in Rwanda,having seen the viability and feasibility studies from other countries of renewable energy for different institutions(financial included);thiswork uses theHOMEREnergy Software and the electricity load profile of a typical SACCO in Rwanda to analyse the affordability and viability of on-site renewable energy generation for SACCO in Rwanda.The results reveal that a solar PV systemwith storage can be the optimal solution(with levelized cost of electricity(LCOE)of 0.713$/kWh which is cheaper than 0.73$/kWh for diesel technology)for SACCOs located in both off-grid areas and grid-connected areas(with 0.041$/kWh LCOE which is lower than the current electricity tariff in Rwanda).The findings in this work can serve as basic tools/materials for policy drafters in Rwanda on how financial institutions can contribute to climate change mitigation through self-renewable energy exploitation.展开更多
Although the clinical benefit of laparoscopic splenectomy and devascularization(LSD) has been elaborated in many studies,its application in massive splenomegaly remains controversial.We conducted a retrospective res...Although the clinical benefit of laparoscopic splenectomy and devascularization(LSD) has been elaborated in many studies,its application in massive splenomegaly remains controversial.We conducted a retrospective research to assess the curative efficacy of LSD for massive splenomegaly due to portal hypertension.Forty-seven patients with massive splenomegaly due to portal hypertension were enrolled in this study,and divided into two groups.Twenty-one patients underwent open splenectomy and devascularization(OSD) from June 2010 to October 2012(OSD group).From March 2013 to February 2015,LSD was performed on 26 patients(LSD group).Perioperative variables were analyzed.Compared to OSD,LSD was associated with less blood loss(241.9±110.0 m L vs.319.0±139.5 m L,P〈0.05),more rapid resumption of oral diet(2.46±0.95 days vs.3.76±1.09 days,P〈0.05),and shorter postoperative hospital stay(5.35±1.65 days vs.7.24±1.55 days,P〈0.05).It was concluded that for patients with massive splenomegaly due to portal hypertension,LSD is feasible and as safe as OSD.展开更多
A new type of shale oil in alkaline lacustrine sediments has been discovered in the Late Paleozoic Fengcheng Formation,Mahu Sag,Junggar Basin,China.The fine-grained sedimentary rocks deposited in this alkaline lacustr...A new type of shale oil in alkaline lacustrine sediments has been discovered in the Late Paleozoic Fengcheng Formation,Mahu Sag,Junggar Basin,China.The fine-grained sedimentary rocks deposited in this alkaline lacustrine environment can be divided into four types and eight sub-types:mudstone(with no alkali minerals),including massive dolomitic mudstone,and massive and laminated calcareous mudstone;dolomite,including massive argillaceous dolomite(with alkali minerals),and massive and laminated argillaceous dolomite(with no alkali minerals);evaporites;and pyroclastic rocks.The massive argillaceous dolomite(with alkali minerals)and pyroclastic rocks have the highest shale oil potential,with average oil saturation index(OSI)values of 344.67 and 124.65 mg HC/g TOC,respectively.Shale oil exploration in the representative well MY1 indicates that the Fengcheng Formation is thick and contains abundant natural fractures,brittle minerals,and mobile oil.The entire Fengcheng Formation is oilbearing and contains three concentrated stratigraphic intervals of shale oil(i.e.,sweet spots).Well MY1 indicates that,compared with source rocks developed in marine and sulfate-type saline basins,the fine-grained sedimentary rocks deposited in alkaline lacustrine environments can also have high shale oil potential.The co-existence and regular distribution of conventional and unconventional reservoirs in the Fengcheng Formation indicate that it is an ideal exploration target for multiple resource types.展开更多
High-voltage direct current(HVDC)grids require fast and reliable protection of the DC lines.The performance of traditional protection schemes is easily impaired by the limitations of the boundary condition and nonline...High-voltage direct current(HVDC)grids require fast and reliable protection of the DC lines.The performance of traditional protection schemes is easily impaired by the limitations of the boundary condition and nonlinearity from the control of converters.One of the key technologies for flexible HVDC grids is the half-bridge modular multilevel converter(HB-MMC).Considering the high controllability of HB-MMC,this study proposes an active injection protection scheme to improve the reliability and sensitivity of the HVDC grid protection.The HB-MMC is used to inject a sinusoidal characteristic signal,at the specified frequency,into the DC lines.Then,the voltage and current at the specified frequency are extracted using the Prony algorithm to calculate the input impedance,which is used for the identification of internal and external faults.The active injection protection scheme was simulated for various cases in the simulation software Power Systems Computer Aided Design.The simulation results indicate that the proposed protection scheme is highly reliable and can overcome transition resistance.展开更多
Effective conservation of threatened biota relies on accurate assessments and scientific guidance.As an unfortunate example,Chinese giant salamanders(Andrias,CGS)remain critically endangered in nature.Misguided conser...Effective conservation of threatened biota relies on accurate assessments and scientific guidance.As an unfortunate example,Chinese giant salamanders(Andrias,CGS)remain critically endangered in nature.Misguided conservation efforts,e.g.,commercial propagation and releasing of millions of likely non-indigenous or interspecific hybrids,have further compromised conservation initiatives.Limited information on wild populations of CGS poses a significant conservation challenge.Following 18-month long field monitoring,we now report the discovery of a wild population of CGS in a closed nature reserve in Jiangxi Province,China.Genomic assessments reveal its genetic distinctiveness and do not detect genetic admixture with other species.Based on morphological and molecular evidences,we describe this CGS as a new species Andrias jiangxiensis sp.nov.This is the only known species of CGS today with a genetically pure,reproducing,in situ population.This discovery emphasizes the important role that closed nature reserves play in protecting species,and the necessity of integrating long-term field monitoring and genetic assessments.It sets a new pathway for discovering and conserving endangered species,especially for those biotas that are similarly being extirpated by anthropogenic translocations and overexploitation.展开更多
The Tainan Basin is one of the set of Cenozoic extensional basins along northern margin of the South China Sea that experienced extension and subsequently thermal subsidence. The Tainan Basin is close to the Taiwan Ar...The Tainan Basin is one of the set of Cenozoic extensional basins along northern margin of the South China Sea that experienced extension and subsequently thermal subsidence. The Tainan Basin is close to the Taiwan Arc-Trench System and straddles a transition zone between oceanic and continental crust. A new regional multi-channel seismic profile (973-01) across the region of NE South China Sea is introduced in this paper. In seismic stratigraphy and structural geology, a model of Cenozoic tectono-sedimentation of the Tainan Basin is established. The results show that three stages can be suggested in Tainan Basin; In Stage A (Oligocene (?)-Lower Miocene) the stratigraphy shows restricted rifting, indicating crustal extension. Terrestrial sedi- ments mostly filled the faulted sags of the North Depression on the continental shelf. Structural highs, including the Central Uplift, blocked material transportation to the South Depression in abyssal basin. In Stage B the Tainan Basin (Middle-Upper Miocene) exhibits a broad subsidence resulting from the post-rifting thermal cooling. The faulted-sags in North Depression had been filled up. Terrestrial materials were transported over the structural highs and deposited directly in the South Depression through sub- marine gullies or canyons. This sedimentation resulted in a crucial change in the slope to a modem shape. In Stage C (Latest Miocene-Recent) a phase change from extension to compression took place due to the orogeny caused by the overthrusting of the Luzon volcanic arc. Many inverse structures, such as thrusts, fault bend folds, and a regional unconformity were formed. Forland basin began developing.展开更多
基金supported by FDCT grants from the Macao Science and Technology Development Fund,China,No.002/2023/ALC(to BYKL)Foshan Medicine Dengfeng Project of China 2019-2021(to BYKL)+3 种基金the Science and Technology Program of Sichuan Province,Nos.2022YFS0620(to DQ)and MZGC20230041(to XFW)the TCMs Commission of Sichuan Province,No.2021MS469(to YT)the Science and Technology Program of Luzhou,No.2022-WGR-194(to YT)the Southwest Medical University Science and Technology Program,No.2021NJXNYD04(to DQ).
文摘Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer’s disease.Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases,including Parkinson’s and Huntington’s diseases,however,the effect of Citri Reticulatae Semen on Alzheimer’s disease remains unelucidated.In the current study,the anti-apoptotic and autophagic roles of Citri Reticulatae Semen extract on amyloid-beta-induced apoptosis in PC12 cells were first investigated.Citri Reticulatae Semen extract protected PC12 cells from amyloid-beta-induced apoptosis by attenuating the Bax/Bcl-2 ratio via activation of autophagy.In addition,Citri Reticulatae Semen extract was confirmed to bind amyloid-beta as revealed by biolayer interferometry in vitro,and suppress amyloid-beta-induced pathology such as paralysis,in a transgenic Caenorhabditis elegans in vivo model.Moreover,genetically defective Caenorhabditis elegans further confirmed that the neuroprotective effect of Citri Reticulatae Semen extract was autophagy-dependent.Most importantly,Citri Reticulatae Semen extract was confirmed to improve cognitive impairment,neuronal injury and amyloid-beta burden in 3×Tg Alzheimer’s disease mice.As revealed by both in vitro and in vivo models,these results suggest that Citri Reticulatae Semen extract is a potential natural therapeutic agent for Alzheimer’s disease via its neuroprotective autophagic effects.
基金funded by the National Natural Science Foundation of China(No.51974268)Open Fund of Key Laboratory of Ministry of Education for Improving Oil and Gas Recovery(NEPUEOR-2022-03)Research and Innovation Fund for Graduate Students of Southwest Petroleum University(No.2022KYCX005)。
文摘The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks.
文摘The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.
基金Supported by National Natural Science Foundation of China (Grant Nos.52235011,51905352)Shenzhen Municipal Excellent Science and Technology Creative Talent Training Program (Grant No.RCBS20210609103819021)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No.2023B1515120086)Shenzhen Municipal Science and Technology Planning Project (Grant No.CJGJZD20230724093600001)。
文摘Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.
基金Supported by National Natural Science Foundation of China(No.82101097,No.82070937).
文摘Ophthalmology is a subject that highly depends on imaging examination.Artificial intelligence(AI)technology has great potential in medical imaging analysis,including image diagnosis,classification,grading,guiding treatment and evaluating prognosis.The combination of the two can realize mass screening of grass-roots eye health,making it possible to seek medical treatment in the mode of“first treatment at the grass-roots level,two-way referral,emergency and slow treatment,and linkage between the upper and lower levels”.On the basis of summarizing the AI technology carried out by scholars and their teams all over the world in the field of ophthalmology,quite a lot of studies have confirmed that machine learning can assist in diagnosis,grading,providing optimal treatment plans and evaluating prognosis in corneal and conjunctival diseases,ametropia,lens diseases,glaucoma,iris diseases,etc.This paper systematically shows the application and progress of AI technology in common anterior segment ocular diseases,the current limitations,and prospects for the future.
基金Supported by Tianjin Health Research Project(No.TJWJ2022ZD009)Science and Technology Foundation of Tianjin Eye Hospital(No.YKPY2207)Tianjin Key Medical Discipline(Specialty)Construction Project(No.TJYXZDXK-016A).
文摘Dear Editor,We described an innovative“single self-leading suture technique”for repairing iridodialysis.Instead of moving the needle forth and back,our method is easier to manipulate in the narrow surgical space between the cornea and lens,which will decrease the unnecessary complications related to iatrogenic injury.We provide an economical friendly and less time-taking method,which improves the suture accuracy.
文摘YTB block in Sichuan basin is a favorable area to exploit oil and gas in shallow tight rock. 3D seismic project of this zone has two characteristics. Firstly, it has high requirements for the tolerance rate of the construction process and the acquisition of high signal-to-noise ratio seismic data;Second, there are widely obstacles and noises that lead to difficult acquisition construction organization. In acquisition practice, high signal-to-noise ratio seismic data was obtained by reasonable design of construction scheme, optimization of excitation parameters, improvement of receiving conditions and optimization of obstacle crossing observation system. .
基金funded by National Natural Science Foundation of China(52004238)China Postdoctoral Science Foundation(2019M663561).
文摘Increasing the production and utilization of shale gas is of great significance for building a clean and low-carbon energy system.Sharp decline of gas production has been widely observed in shale gas reservoirs.How to forecast shale gas production is still challenging due to complex fracture networks,dynamic fracture properties,frac hits,complicated multiphase flow,and multi-scale flow as well as data quality and uncertainty.This work develops an integrated framework for evaluating shale gas well production based on data-driven models.Firstly,a comprehensive dominated-factor system has been established,including geological,drilling,fracturing,and production factors.Data processing and visualization are required to ensure data quality and determine final data set.A shale gas production evaluation model is developed to evaluate shale gas production levels.Finally,the random forest algorithm is used to forecast shale gas production.The prediction accuracy of shale gas production level is higher than 95%based on the shale gas reservoirs in China.Forty-one wells are randomly selected to predict cumulative gas production using the optimal regression model.The proposed shale gas production evaluation frame-work overcomes too many assumptions of analytical or semi-analytical models and avoids huge computation cost and poor generalization for numerical modelling.
基金The authors are grateful to the financial support from China Postdoctoral Science Foundation(2022M712645)Opening Fund of Key Laboratory of Enhanced Oil Recovery(Northeast Petroleum University),Ministry of Education(NEPU-EOR-2021-03).
文摘Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vitally important for reservoir effective development.Well interference has been historically investigated by pressure transient analysis,while it has shown that rate transient analysis has great potential in well interference diagnosis.However,the impact of complex fracture networks(CFNs)on rate transient behavior of parent well and child well in unconventional reservoirs is still not clear.To further investigate,this paper develops an integrated approach combining pressure and rate transient analysis for well interference diagnosis considering CFNs.To perform multi-well simulation considering CFNs,non-intrusive embedded discrete fracture model approach was applied for coupling fracture with reservoir models.The impact of CFN including natural fractures and frac-hits on pressure and rate transient behavior in multi-well system was investigated.On a logelog plot,interference flow and compound linear flow are two new flow regimes caused by nearby producers.When both NFs and frac-hits are present in the reservoir,frac-hits have a greater impact on well#1 which contains frac-hits,and NFs have greater impact on well#3 which does not have frac-hits.For all well producing circumstances,it might be challenging to see divergence during pseudosteady state flow brought on by frac-hits on the logelog plot.Besides,when NFs occur,reservoir depletion becomes noticeable in comparison to frac-hits in pressure distribution.Application of this integrated approach demonstrates that it works well to characterize the well interference among different multi-fractured horizontal wells in a well pad.Better reservoir evaluation can be acquired based on the new features observed in the novel model,demonstrating the practicability of the proposed approach.The findings of this study can help for better evaluating well interference degree in multi-well systems combing PTA and RTA,which can reduce the uncertainty and improve the accuracy of the well interference analysis based on both field pressure and rate data.
基金financially supported by National Natural Science Foundation of China (Nos. U22A20193 and 51975218)Fundamental Research Funds for the Central Universities(No. 2022ZYGXZR101)+3 种基金Natural Science Foundation of Guangdong Province (No. 2021A1515010642)GuangdongHong Kong Joint Innovation Project of Guangdong Province(No. 2021A0505110002)Guangdong-Foshan Joint Foundation (No. 2021B1515120031)Innovation Group Project of Foshan (No. 2120001010816)
文摘The lithium-sulfur(Li-S)battery with an ultrahigh theoretical energy density has emerged as a promising rechargeable battery system.However,the practical applications of Li-S batteries are severely plagued by the sluggish reaction kinetics of sulfur species and notorious shuttling of soluble lithium polysulfides(LiPSs)intermediates that result in low sulfur utilization.The introduction of functional layers on separators has been considered as an effective strategy to improve the sulfur utilization in Li-S batteries by achieving effective regulation of LiPSs.Herein,a promising self-assembly strategy is proposed to achieve the low-cost fabrication of hollow and hierarchically porous Fe_(3)O_(4)nanospheres(p-Fe_(3)O_(4)-NSs)assembled by numerous extremely-small primary nanocrystals as building blocks.The rationally-designed p-Fe_(3)O_(4)-NSs are utilized as a multifunctional layer on the separator with highly efficient trapping and conversion features toward LiPSs.Results demonstrate that the nanostructured p-Fe_(3)O_(4)-NSs provide chemical adsorption toward LiPSs and kinetically promote the mutual transformation between LiPSs and Li_(2)S_(2)/Li_(2)S during cycling,thus inhibiting the LiPSs shuttling and boosting the redox reaction kinetics via a chemisorption-catalytic conversion mechanism.The enhanced wettability of the p-Fe_(3)O_(4)-NSs-based separator with the electrolyte enables fast transportation of lithium ions.Benefitting from these alluring properties,the functionalized separator with p-Fe_(3)O_(4)-NSs endows the battery with an admirable rate performance of 877 mAh g^(−1)at 2 C,an ultra-durable cycling performance of up to 2176 cycles at 1 C,and a promising areal capacity of 4.55 mAh cm^(−2)under high-sulfur-loading and lean-electrolyte conditions(4.29 mg cm^(−2),electrolyte/ratio:8μl mg^(−1)).This study will offer fresh insights on the rational design and low-cost fabrication of multifunctional separator to strengthen electrochemical reaction kinetics by regulating LiPSs conversion for developing efficient and long-life Li-S batteries.
文摘目的:整体把握近20年国内外认知障碍照护研究热点及其差异,为国内认知障碍照护研究提供思路和方向。方法:检索Web of Science核心合集和CNKI数据库中2003年至2022年收录的相关文献,运用CiteSpace分析软件对认知障碍照护领域国家分布、发文量、研究机构、研究作者、主题识别和热点关键词等进行可视化分析。结果:当前认知障碍照护研究主要集中在发达国家;国际研究主要集中在综合性的大学,国内研究主要集中在护理学院院系;通过关键词聚类图谱分析,在国际研究领域得出照护技能方法、照顾者研究、整合照顾、干预、社会支持等研究热点,在国内研究得出照顾者负担、量表使用、长期照护体系、干预和精神症状管理等研究热点。结论:国际认知障碍照护研究热点对国内相关领域研究具有启示作用,建立政府主导、多部门联动的照护服务体系,健全长期照护服务需求评估制度和监督制度。从整合视角出发,协调多方资源,为认知障碍提供连续性高质量的服务;建立认知障碍风险评估模型和早期筛查及干预措施;尝试设计医院、社区、家庭和机构四元联动的整合照顾模式,以推进我国认知障碍照护事业的发展。
基金supported by the State Key Development Program for Basic Research of China(Grant No.2022YFA1602503)the National Natural Science Foundation of China(Grant Nos.12120101005 and 11775278).
文摘A novel experimental method is proposed for observing plasma dynamics subjected to magnetic fields based on a newly developed cylindrical theta-pinch device.By measuring simultaneously the temporal profiles of multiple parameters including the drive current,luminosity,plasma density,and plasma temperature,it provides a basis for observing the plasma dynamics of the theta pinch,such as shock transport and magnetohydrodynamic instability.We show that the plasma evolution can be distinguished as three phases.First,in the radial implosion phase,the trajectories of the current sheath and shock wave are ascertained by combining experimental data with a snowplow model(Lee model)in a self-consistent way.Second,in the axial flow phase,we demonstrate that m=0(sausage)instability associated with the plasma axial flow suppresses the plasma end-loss.Third,in the newly observed anomalous heating phase,the lower-hybrid-drift instability may develop near the current sheath,which induces anomalous resistivity and enhanced plasma heating.The present experimental data and novel method offer better understanding of plasma dynamics in the presence of magnetic fields,thereby providing important support for relevant research in magneto-inertial fusion.
基金Fujian Provincial Department of Science and Technology(Grant Number:2021I0014)Fujian Provincial Department of Housing and Construction(Grant Number:2022-K-67+5 种基金Fujian Provincial Department of Education(Grant Number:JAT201518)Additionally,Authors are grateful to Quanzhou Tongjiang Scholar Special Fund for financial support throughGrant Number:(600005-Z17X0234)Quanzhou Science and Technology Bureau for financial support through Grant Number:(2018Z010)Huaqiao University through Grant Number:(17BS201)the Fujian Provincial Department of Science and Technology for financial support through Grant(2018J05121)Authors are also grateful for financial support from the Fujian Provincial Department of Science and Technology through Grants Numbers:2021I0014 and 2018J05121.
文摘Renewable energy exploitation is among the development strategies set by the government of Rwanda on the roadmap to 2023/2024 universal electricity access and theUnitedNations plans by 2030.Numerous previous studies oncleanenergy technologies inRwandahavemostly focusedonhouseholds’usagebut there are currentlynostudies describing the feasibility of clean energy technologies for financial institutions.The skepticism on renewable energy in Africa was previously reported by some personnel.Having realized that most SACCOs(Savings and Credit Co-Operatives)in Rwanda use diesel technology for backup/emergency electricity supply,taking consideration of abundant solar resources in Rwanda,having seen the viability and feasibility studies from other countries of renewable energy for different institutions(financial included);thiswork uses theHOMEREnergy Software and the electricity load profile of a typical SACCO in Rwanda to analyse the affordability and viability of on-site renewable energy generation for SACCO in Rwanda.The results reveal that a solar PV systemwith storage can be the optimal solution(with levelized cost of electricity(LCOE)of 0.713$/kWh which is cheaper than 0.73$/kWh for diesel technology)for SACCOs located in both off-grid areas and grid-connected areas(with 0.041$/kWh LCOE which is lower than the current electricity tariff in Rwanda).The findings in this work can serve as basic tools/materials for policy drafters in Rwanda on how financial institutions can contribute to climate change mitigation through self-renewable energy exploitation.
文摘Although the clinical benefit of laparoscopic splenectomy and devascularization(LSD) has been elaborated in many studies,its application in massive splenomegaly remains controversial.We conducted a retrospective research to assess the curative efficacy of LSD for massive splenomegaly due to portal hypertension.Forty-seven patients with massive splenomegaly due to portal hypertension were enrolled in this study,and divided into two groups.Twenty-one patients underwent open splenectomy and devascularization(OSD) from June 2010 to October 2012(OSD group).From March 2013 to February 2015,LSD was performed on 26 patients(LSD group).Perioperative variables were analyzed.Compared to OSD,LSD was associated with less blood loss(241.9±110.0 m L vs.319.0±139.5 m L,P〈0.05),more rapid resumption of oral diet(2.46±0.95 days vs.3.76±1.09 days,P〈0.05),and shorter postoperative hospital stay(5.35±1.65 days vs.7.24±1.55 days,P〈0.05).It was concluded that for patients with massive splenomegaly due to portal hypertension,LSD is feasible and as safe as OSD.
基金funded by PetroChina Science and Technology Major Project(Grant No.2019E-2602)。
文摘A new type of shale oil in alkaline lacustrine sediments has been discovered in the Late Paleozoic Fengcheng Formation,Mahu Sag,Junggar Basin,China.The fine-grained sedimentary rocks deposited in this alkaline lacustrine environment can be divided into four types and eight sub-types:mudstone(with no alkali minerals),including massive dolomitic mudstone,and massive and laminated calcareous mudstone;dolomite,including massive argillaceous dolomite(with alkali minerals),and massive and laminated argillaceous dolomite(with no alkali minerals);evaporites;and pyroclastic rocks.The massive argillaceous dolomite(with alkali minerals)and pyroclastic rocks have the highest shale oil potential,with average oil saturation index(OSI)values of 344.67 and 124.65 mg HC/g TOC,respectively.Shale oil exploration in the representative well MY1 indicates that the Fengcheng Formation is thick and contains abundant natural fractures,brittle minerals,and mobile oil.The entire Fengcheng Formation is oilbearing and contains three concentrated stratigraphic intervals of shale oil(i.e.,sweet spots).Well MY1 indicates that,compared with source rocks developed in marine and sulfate-type saline basins,the fine-grained sedimentary rocks deposited in alkaline lacustrine environments can also have high shale oil potential.The co-existence and regular distribution of conventional and unconventional reservoirs in the Fengcheng Formation indicate that it is an ideal exploration target for multiple resource types.
基金supported by the Fundamental Research Funds for the Central Universities(No.2020YJS169)The National Natural Science Foundation of China-State Grid Joint Fund for Smart Grid(No.U2066210).
文摘High-voltage direct current(HVDC)grids require fast and reliable protection of the DC lines.The performance of traditional protection schemes is easily impaired by the limitations of the boundary condition and nonlinearity from the control of converters.One of the key technologies for flexible HVDC grids is the half-bridge modular multilevel converter(HB-MMC).Considering the high controllability of HB-MMC,this study proposes an active injection protection scheme to improve the reliability and sensitivity of the HVDC grid protection.The HB-MMC is used to inject a sinusoidal characteristic signal,at the specified frequency,into the DC lines.Then,the voltage and current at the specified frequency are extracted using the Prony algorithm to calculate the input impedance,which is used for the identification of internal and external faults.The active injection protection scheme was simulated for various cases in the simulation software Power Systems Computer Aided Design.The simulation results indicate that the proposed protection scheme is highly reliable and can overcome transition resistance.
基金equally supported by the STS Program of Chinese Academy of Sciencesand the Strategic Priority Research Program of Chinese Academy of Sciences(XDB31000000)+1 种基金The Animal Branch of the Germplasm Bank of Wild Species,Chinese Academy of Sciences(Large Research Infrastructure Funding)Jiangxi Academy of Sciences(2021YSBG50008)partially supported it。
文摘Effective conservation of threatened biota relies on accurate assessments and scientific guidance.As an unfortunate example,Chinese giant salamanders(Andrias,CGS)remain critically endangered in nature.Misguided conservation efforts,e.g.,commercial propagation and releasing of millions of likely non-indigenous or interspecific hybrids,have further compromised conservation initiatives.Limited information on wild populations of CGS poses a significant conservation challenge.Following 18-month long field monitoring,we now report the discovery of a wild population of CGS in a closed nature reserve in Jiangxi Province,China.Genomic assessments reveal its genetic distinctiveness and do not detect genetic admixture with other species.Based on morphological and molecular evidences,we describe this CGS as a new species Andrias jiangxiensis sp.nov.This is the only known species of CGS today with a genetically pure,reproducing,in situ population.This discovery emphasizes the important role that closed nature reserves play in protecting species,and the necessity of integrating long-term field monitoring and genetic assessments.It sets a new pathway for discovering and conserving endangered species,especially for those biotas that are similarly being extirpated by anthropogenic translocations and overexploitation.
基金the National Basic Research Program (973)of China (No. 2007CB411704)the National Natural Science Foun-dation of China (No. 40676024)+1 种基金the Key Laboratory of MarginalSea Geologythe Chinese Academy of Sciences (Nos. KZCX3-SW-234 and MSGL0609)
文摘The Tainan Basin is one of the set of Cenozoic extensional basins along northern margin of the South China Sea that experienced extension and subsequently thermal subsidence. The Tainan Basin is close to the Taiwan Arc-Trench System and straddles a transition zone between oceanic and continental crust. A new regional multi-channel seismic profile (973-01) across the region of NE South China Sea is introduced in this paper. In seismic stratigraphy and structural geology, a model of Cenozoic tectono-sedimentation of the Tainan Basin is established. The results show that three stages can be suggested in Tainan Basin; In Stage A (Oligocene (?)-Lower Miocene) the stratigraphy shows restricted rifting, indicating crustal extension. Terrestrial sedi- ments mostly filled the faulted sags of the North Depression on the continental shelf. Structural highs, including the Central Uplift, blocked material transportation to the South Depression in abyssal basin. In Stage B the Tainan Basin (Middle-Upper Miocene) exhibits a broad subsidence resulting from the post-rifting thermal cooling. The faulted-sags in North Depression had been filled up. Terrestrial materials were transported over the structural highs and deposited directly in the South Depression through sub- marine gullies or canyons. This sedimentation resulted in a crucial change in the slope to a modem shape. In Stage C (Latest Miocene-Recent) a phase change from extension to compression took place due to the orogeny caused by the overthrusting of the Luzon volcanic arc. Many inverse structures, such as thrusts, fault bend folds, and a regional unconformity were formed. Forland basin began developing.