High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness...High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.展开更多
The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a di...The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.展开更多
Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkali...Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed in ca. 480 Ma. The Nansa granites have εHf(t) values ranging from-16.04 to 4.36 with corresponding TC DMages of 2.10–0.81 Ga, which suggests the magmas derived from the partial melting of ancient metasedimentary with minor involvement of mantle-derived components. A synthesis of data for the Early Paleozoic igneous rocks in the Baoshan block and adjacent(Tengchong,Qiangtang, Sibumasu, Himalaya, etc.) blocks indicates that these blocks were all aligned along the proto-Tethyan margin of East Gondwana in the Early Paleozoic. The Early Paleozoic S-type granites from Nansa were generated in a high-temperature and low-pressure(HTLP) extensional tectonic setting, which resulted from Andean-type orogeny instead of the final assembly of Gondwana or crustal extension in a non-arc environment. In certain places, an expanding environment may exist in opposition to the tectonic backdrop of the lithosphere’s thickening and shortening, leading the crust to melt and decompress,mantle-derived materials to mix, and a small quantity of peraluminous granite to emerge.展开更多
The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties...The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties,local corrosion properties,and slow strain rate tensile stress corrosion tests.Microstructure characterization techniques such as metallographic microscopy,scanning electron microscopy(SEM),and transmission electron microscopy(TEM)were also employed.The results indicate that the tensile strength of the alloy produced by T6I6 aging is similar to that produced by T6I4 aging,and it even exceeds 700 MPa.Furthermore,the yield strength increases by 52.7 MPa,reaching 654.8 MPa after T6I6 aging treatment.The maximum depths of intergranular corrosion(IGC)and exfoliation corrosion(EXCO)decrease from 116.3 and 468.5μm to 89.5 and 324.3μm,respectively.The stress corrosion factor also decreases from 2.1%to 1.6%.These findings suggest that the alloy treated with T6I6 aging exhibits both high strength and excellent stress corrosion cracking resistance.Similarly,when the alloy is treated with T6I4,T6I6 and T6I7 aging,the sizes of grain boundary precipitates(GBPs)are found to be 5.2,18.4,and 32.8 nm,respectively.The sizes of matrix precipitates are 4.8,5.7 and 15.7 nm,respectively.The atomic fractions of Zn in GBPs are 9.92 at.%,8.23 at.%and 6.87 at.%,respectively,while the atomic fractions of Mg are 12.66 at.%,8.43 at.%and 7.00 at.%,respectively.Additionally,the atomic fractions of Cu are 1.83 at.%,2.47 at.%and 3.41 at.%,respectively.展开更多
Pien Tze Huang(PZH),a class-1 nationally protected traditional Chinese medicine(TCM),has been used to treat liver diseases such as hepatitis;however,the effect of PZH on the progression of sepsis is unknown.Here,we re...Pien Tze Huang(PZH),a class-1 nationally protected traditional Chinese medicine(TCM),has been used to treat liver diseases such as hepatitis;however,the effect of PZH on the progression of sepsis is unknown.Here,we reported that PZH attenuated lipopolysaccharide(LPS)-induced sepsis in mice and reduced LPS-induced production of proinflammatory cytokines in macrophages by inhibiting the activation of mitogen-activated protein kinase(MAPK)and nuclear factor-kappa B(NF-κB)signalling.Mechanistically,PZH stimulated signal transducer and activator of transcription 3(STAT3)phosphorylation to induce the expression of A20,which could inhibit the activation of NF-κB and MAPK signalling.Knockdown of the bile acid(BA)receptor G protein-coupled bile acid receptor 1(TGR5)in macrophages abolished the effects of PZH on STAT3 phosphorylation and A20 induction,as well as the LPS-induced inflammatory response,suggesting that BAs in PZH may mediate its anti-inflammatory effects by activating TGR5.Consistently,deprivation of BAs in PZH by cholestyramine resin reduced the effects of PZH on the expression of phosphorylated-STAT3 and A20,the activation of NF-κB and MAPK signalling,and the production of proinflammatory cytokines,whereas the addition of BAs to cholestyramine resin-treated PZH partially restored the inhibitory effects on the production of proinflammatory cytokines.Overall,our study identifies BAs as the effective components in PZH that activate TGR5-STAT3-A20 signalling to ameliorate LPS-induced sepsis.展开更多
This study quantified the regional damages resulting from temperature and sea level changes using the Regional Integrated of Climate and Economy(RICE)model,as well as the effects of enabling and disabling the climate ...This study quantified the regional damages resulting from temperature and sea level changes using the Regional Integrated of Climate and Economy(RICE)model,as well as the effects of enabling and disabling the climate impact module on future emission pathways.Results highlight varied damages depending on regional economic development and locations.Specifically,China and Africa could suffer the most serious comprehensive damages caused by temperature change and sea level rise,followed by India,other developing Asian countries(OthAsia),and other high-income countries(OHI).The comprehensive damage fractions for China and Africa are projected to be 15.1%and 12.5%of gross domestic product(GDP)in 2195,with corresponding cumulative damages of 124.0 trillion and 87.3 trillion United States dollars(USD)from 2005 to 2195,respectively.Meanwhile,the comprehensive damage fractions in Japan,Eurasia,and Russia are smaller and projected to be lower than 5.6%of GDP in 2195,with cumulative damages of 6.8 trillion,4.2 trillion,and 3.3 trillion USD,respectively.Additionally,coastal regions like Africa,the European Union(EU),and OHI show comparable damages for sea level rise and temperature change.In China,however,sea level-induced damages are projected to exceed those from temperature changes.Moreover,this study indicates that switching the damage modules on or off affects the regional and global emission trajectories,but the magnitude is relatively small.By 2195,global emissions under the experiments with all of the damage modules switched off,only the sea level damage module switched on,and only the temperature damage module switched on,were 3.5%,2.3%and 1.2%higher than those with all of the damage modules switched on,respectively.展开更多
We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magne...We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magnetoresistance without any sign of saturation with a magnetic field up to 30T. We also observe a phase transition with significant anomalies in resistivity and heat capacity at T_(p)~140 K. Thermal expansion measurement reveals a subtle lattice parameter variation near Tp, i.e.,?L_(c)/L_(c)~0.062%. The structural characterization confines that there is no structure transition below and above T_(p). All these results suggest that the nonmagnetic transition of SrCu_(4-x)P_(2) could be associated with structural distortion.展开更多
The placenta plays a crucial role in successful mammalian reproduction.Ruminant animals possess a semi-invasive placenta characterized by a highly vascularized structure formed by maternal endometrial caruncles and fe...The placenta plays a crucial role in successful mammalian reproduction.Ruminant animals possess a semi-invasive placenta characterized by a highly vascularized structure formed by maternal endometrial caruncles and fetal placental cotyledons,essential for full-term fetal development.The cow placenta harbors at least two trophoblast cell populations:uninucleate(UNC)and binucleate(BNC)cells.However,the limited capacity to elucidate the transcriptomic dynamics of the placental natural environment has resulted in a poor understanding of both the molecular and cellular interactions between trophoblast cells and niches,and the molecular mechanisms governing trophoblast differentiation and functionalization.To fill this knowledge gap,we employed Stereo-seq to map spatial gene expression patterns at near single-cell resolution in the cow placenta at 90 and 130 days of gestation,attaining high-resolution,spatially resolved gene expression profiles.Based on clustering and cell marker gene expression analyses,key transcription factors,including YBX1 and NPAS2,were shown to regulate the heterogeneity of trophoblast cell subpopulations.Cell communication and trajectory analysis provided a framework for understanding cell-cell interactions and the differentiation of trophoblasts into BNCs in the placental microenvironment.Differential analysis of cell trajectories identified a set of genes involved in regulation of trophoblast differentiation.Additionally,spatial modules and co-variant genes that help shape specific tissue structures were identified.Together,these findings provide foundational insights into important biological pathways critical to the placental development and function in cows.展开更多
Ti-V-based alloys are proved of huge potential in storing hydrogen,but the incomplete reversible hydrogen storage capacity caused by overstability of V hydride has limited the large-scale application.In this study,Ti_...Ti-V-based alloys are proved of huge potential in storing hydrogen,but the incomplete reversible hydrogen storage capacity caused by overstability of V hydride has limited the large-scale application.In this study,Ti_(32)V_(40+x)Fe_(23-x)Mn_(5)(x=0,4,8,12,at.%)alloys were designed,and the effects of V/Fe ratio on phase constitution and hydrogen storage properties were investigated.The main phase of the alloys is body-centered cubic(BCC)phase,and the lattice constants of the BCC phase decrease with the decrease of V/Fe ratio.Moreover,C14 Laves phase exists in alloys with a Fe content of 19at.%to 23at.%.For hydrogenation,the C14 Laves phase can accelerate the hydrogen absorption rate,but the hydrogen absorption capacity is reduced.With the decrease of V/Fe ratio,the hydride gradually destabilizes.Owing to its large lattice constant and high hydrogen absorption phase content,the Ti_(32)V_(52)Fe_(11)Mn_(5)alloy shows the most enhanced hydrogen storage properties with hydrogenation and dehydrogenation capacities of 3.588wt.%at 298 K and 1.688wt.%at 343 K,respectively.The hydrogen absorption capacity of this alloy can be reserved to 3.574wt.%after 20 cycles of hydrogen absorption and desorption.展开更多
This paper focuses on the scheduling problem of workflow tasks that exhibit interdependencies.Unlike indepen-dent batch tasks,workflows typically consist of multiple subtasks with intrinsic correlations and dependenci...This paper focuses on the scheduling problem of workflow tasks that exhibit interdependencies.Unlike indepen-dent batch tasks,workflows typically consist of multiple subtasks with intrinsic correlations and dependencies.It necessitates the distribution of various computational tasks to appropriate computing node resources in accor-dance with task dependencies to ensure the smooth completion of the entire workflow.Workflow scheduling must consider an array of factors,including task dependencies,availability of computational resources,and the schedulability of tasks.Therefore,this paper delves into the distributed graph database workflow task scheduling problem and proposes a workflow scheduling methodology based on deep reinforcement learning(DRL).The method optimizes the maximum completion time(makespan)and response time of workflow tasks,aiming to enhance the responsiveness of workflow tasks while ensuring the minimization of the makespan.The experimental results indicate that the Q-learning Deep Reinforcement Learning(Q-DRL)algorithm markedly diminishes the makespan and refines the average response time within distributed graph database environments.In quantifying makespan,Q-DRL achieves mean reductions of 12.4%and 11.9%over established First-fit and Random scheduling strategies,respectively.Additionally,Q-DRL surpasses the performance of both DRL-Cloud and Improved Deep Q-learning Network(IDQN)algorithms,with improvements standing at 4.4%and 2.6%,respectively.With reference to average response time,the Q-DRL approach exhibits a significantly enhanced performance in the scheduling of workflow tasks,decreasing the average by 2.27%and 4.71%when compared to IDQN and DRL-Cloud,respectively.The Q-DRL algorithm also demonstrates a notable increase in the efficiency of system resource utilization,reducing the average idle rate by 5.02%and 9.30%in comparison to IDQN and DRL-Cloud,respectively.These findings support the assertion that Q-DRL not only upholds a lower average idle rate but also effectively curtails the average response time,thereby substantially improving processing efficiency and optimizing resource utilization within distributed graph database systems.展开更多
BACKGROUND Radiotherapy stands as a promising therapeutic modality for colorectal cancer(CRC);yet,the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission.AIM...BACKGROUND Radiotherapy stands as a promising therapeutic modality for colorectal cancer(CRC);yet,the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission.AIM To elucidate the role played by microRNA-298(miR-298)in CRC radio-resistance.METHODS To establish a radio-resistant CRC cell line,HT-29 cells underwent exposure to 5 gray ionizing radiation that was followed by a 7-d recovery period.The quantification of miR-298 levels within CRC cells was conducted through quantitative RT-PCR,and protein expression determination was realized through Western blotting.Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and proliferation by clonogenic assay.Radio-induced apoptosis was discerned through flow cytometry analysis.RESULTS We observed a marked upregulation of miR-298 in radio-resistant CRC cells.MiR-298 emerged as a key determinant of cell survival following radiation exposure,as its overexpression led to a notable reduction in radiation-induced apoptosis.Intriguingly,miR-298 expression exhibited a strong correlation with CRC cell viability.Further investigation unveiled human dual-specificity tyrosine(Y)-regulated kinase 1A(DYRK1A)as miR-298’s direct target.CONCLUSION Taken together,our findings underline the role played by miR-298 in bolstering radio-resistance in CRC cells by means of DYRK1A downregulation,thereby positioning miR-298 as a promising candidate for mitigating radioresistance in CRC.展开更多
In response to the challenges posed by insufficient real-time performance and suboptimal matching accuracy of traditional feature matching algorithms within automotive panoramic surround view systems,this paper has pr...In response to the challenges posed by insufficient real-time performance and suboptimal matching accuracy of traditional feature matching algorithms within automotive panoramic surround view systems,this paper has proposed a high-performance dimension reduction parallel matching algorithm that integrates Principal Component Analysis(PCA)and Dual-Heap Filtering(DHF).The algorithm employs PCA to map the feature points into the lower-dimensional space and employs the square of Euclidean distance for feature matching,which significantly reduces computational complexity.To ensure the accuracy of feature matching,the algorithm utilizes Dual-Heap Filtering to filter and refine matched point pairs.To further enhance matching speed and make optimal use of computational resources,the algorithm introduces a multi-core parallel matching strategy,greatly elevating the efficiency of feature matching.Compared to Scale-Invariant Feature Transform(SIFT)and Speeded Up Robust Features(SURF),the proposed algorithm reduces matching time by 77%to 80%and concurrently enhances matching accuracy by 5%to 15%.Experimental results demonstrate that the proposed algorithmexhibits outstanding real-time matching performance and accuracy,effectivelymeeting the feature-matching requirements of automotive panoramic surround view systems.展开更多
There have been several studies on sulfur depletion in dense cores like TMC-1(Taurus Molecular Cloud 1),employing updated reaction networks for sulfur species to explain the missing sulfur in the gas within dense clou...There have been several studies on sulfur depletion in dense cores like TMC-1(Taurus Molecular Cloud 1),employing updated reaction networks for sulfur species to explain the missing sulfur in the gas within dense clouds.Most of these studies used a C/O ratio of 0.7 or lower.We present NSRT(NanShan 26m Radio Telescope)observations of TMC-1 alongside results from time-dependent chemical simulations using an updated chemical network.Our findings highlight the impact of the C/O ratio on the gas-phase evolution of C2S and C3S.The simulation results show that the C/O ratio is an important parameter,playing a fundamental role in determining the gas-phase abundances of sulfur species in dense cores.展开更多
[Objectives]To analyze the relationship between serum 8-hydroxydeoxyguanosine(8-OHdG),heart fatty acid-binding protein(H-FABP),C-reactive protein(CRP)levels and clinical efficacy and short-term prognosis in patients w...[Objectives]To analyze the relationship between serum 8-hydroxydeoxyguanosine(8-OHdG),heart fatty acid-binding protein(H-FABP),C-reactive protein(CRP)levels and clinical efficacy and short-term prognosis in patients with ischemic cardiomyopathy.[Methods]The clinical data of 100 patients with ischemic cardiomyopathy from October 2021 to November 2022 were retrospectively analyzed,and the serum levels of 8-OHdG,H-FABP and CRP were compared before and one week after treatment.The patients were followed up for 12 months after discharge,and the incidence of major adverse cardiovascular events(MACE)was counted during the follow-up period.Univariate and multivariate Logistic regression analysis were used to analyze the prognostic factors of patients with ischemic cardiomyopathy in the near future,and the predictive value of serum 8-OHdG,H-FABP and CRP levels for the prognosis of patients was evaluated by ROC curve.[Results]After 1 week of treatment,the serum levels of 8-OHdG,H-FABP and CRP in patients with ischemic cardiomyopathy were significantly lower than those before treatment(P<0.05).During the follow-up period,34 patients developed MACE;the serum levels of 8-OHdG,H-FABP and CRP in the MACE group were higher than those in the non-MACE group,and the differences were statistically significant(P<0.05).Multivariate Logistic regression analysis showed that 8-OHdG,H-FABP and CRP were the risk factors of MACE in patients with ischemic cardiomyopathy(P<0.05).ROC curve analysis showed that the combined prediction of 8-OHdG,H-FABP and CRP for MACE in patients with ischemic cardiomyopathy was higher than that of CRP,H-FABP and 8-OHdG alone(P<0.05).[Conclusions]8-OHdG,H-FABP and CRP are closely related to the clinical efficacy and short-term prognosis of patients with ischemic cardiomyopathy,and the detection of serum 8-OHdG,H-FABP and CRP levels can help to evaluate the clinical efficacy and short-term prognosis of patients with ischemic cardiomyopathy.展开更多
基金supported by the National Natural Science Foundation of China(No.52273280)the Creative Research Groups of China(No.51921001).
文摘High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.
基金This work is supported by“the Fundamental Research Funds for the Central Universities”,111 project No.B20019Shanghai Natural Science Foundation,grant No.19ZR1466800.
文摘The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.
基金funded by the National Natural Science Foundation of China (2019M653840XB)the National Natural Science Foundation of China (41972043 and 42062006)。
文摘Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed in ca. 480 Ma. The Nansa granites have εHf(t) values ranging from-16.04 to 4.36 with corresponding TC DMages of 2.10–0.81 Ga, which suggests the magmas derived from the partial melting of ancient metasedimentary with minor involvement of mantle-derived components. A synthesis of data for the Early Paleozoic igneous rocks in the Baoshan block and adjacent(Tengchong,Qiangtang, Sibumasu, Himalaya, etc.) blocks indicates that these blocks were all aligned along the proto-Tethyan margin of East Gondwana in the Early Paleozoic. The Early Paleozoic S-type granites from Nansa were generated in a high-temperature and low-pressure(HTLP) extensional tectonic setting, which resulted from Andean-type orogeny instead of the final assembly of Gondwana or crustal extension in a non-arc environment. In certain places, an expanding environment may exist in opposition to the tectonic backdrop of the lithosphere’s thickening and shortening, leading the crust to melt and decompress,mantle-derived materials to mix, and a small quantity of peraluminous granite to emerge.
基金the Tianjin Key Laboratory of Fastening and Connection Technology Enterprises 2022—2023,China(No.TKLF2022-02-C-02)the technical support from the School of Materials Science and Engineering,Central South University,China.
文摘The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties,local corrosion properties,and slow strain rate tensile stress corrosion tests.Microstructure characterization techniques such as metallographic microscopy,scanning electron microscopy(SEM),and transmission electron microscopy(TEM)were also employed.The results indicate that the tensile strength of the alloy produced by T6I6 aging is similar to that produced by T6I4 aging,and it even exceeds 700 MPa.Furthermore,the yield strength increases by 52.7 MPa,reaching 654.8 MPa after T6I6 aging treatment.The maximum depths of intergranular corrosion(IGC)and exfoliation corrosion(EXCO)decrease from 116.3 and 468.5μm to 89.5 and 324.3μm,respectively.The stress corrosion factor also decreases from 2.1%to 1.6%.These findings suggest that the alloy treated with T6I6 aging exhibits both high strength and excellent stress corrosion cracking resistance.Similarly,when the alloy is treated with T6I4,T6I6 and T6I7 aging,the sizes of grain boundary precipitates(GBPs)are found to be 5.2,18.4,and 32.8 nm,respectively.The sizes of matrix precipitates are 4.8,5.7 and 15.7 nm,respectively.The atomic fractions of Zn in GBPs are 9.92 at.%,8.23 at.%and 6.87 at.%,respectively,while the atomic fractions of Mg are 12.66 at.%,8.43 at.%and 7.00 at.%,respectively.Additionally,the atomic fractions of Cu are 1.83 at.%,2.47 at.%and 3.41 at.%,respectively.
基金supported by research funds from Zhangzhou Pien Tze Huang Pharmaceutical Co.Ltd(Grant Nos.:437b8f31,d6092dae,YHT-19064 to Chundong Yu)the National Natural Science Foundation of China(Grant Nos.:81970485,82173086 to Chundong Yu)the Natural Science Foundation of Fujian Province(Grant No.:2023J01249 to Shicong Wang).
文摘Pien Tze Huang(PZH),a class-1 nationally protected traditional Chinese medicine(TCM),has been used to treat liver diseases such as hepatitis;however,the effect of PZH on the progression of sepsis is unknown.Here,we reported that PZH attenuated lipopolysaccharide(LPS)-induced sepsis in mice and reduced LPS-induced production of proinflammatory cytokines in macrophages by inhibiting the activation of mitogen-activated protein kinase(MAPK)and nuclear factor-kappa B(NF-κB)signalling.Mechanistically,PZH stimulated signal transducer and activator of transcription 3(STAT3)phosphorylation to induce the expression of A20,which could inhibit the activation of NF-κB and MAPK signalling.Knockdown of the bile acid(BA)receptor G protein-coupled bile acid receptor 1(TGR5)in macrophages abolished the effects of PZH on STAT3 phosphorylation and A20 induction,as well as the LPS-induced inflammatory response,suggesting that BAs in PZH may mediate its anti-inflammatory effects by activating TGR5.Consistently,deprivation of BAs in PZH by cholestyramine resin reduced the effects of PZH on the expression of phosphorylated-STAT3 and A20,the activation of NF-κB and MAPK signalling,and the production of proinflammatory cytokines,whereas the addition of BAs to cholestyramine resin-treated PZH partially restored the inhibitory effects on the production of proinflammatory cytokines.Overall,our study identifies BAs as the effective components in PZH that activate TGR5-STAT3-A20 signalling to ameliorate LPS-induced sepsis.
基金funded by the National Natu-ral Science Foundation of China(Grant No.42075044 and No.41975112)a project supported by the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311022006).
文摘This study quantified the regional damages resulting from temperature and sea level changes using the Regional Integrated of Climate and Economy(RICE)model,as well as the effects of enabling and disabling the climate impact module on future emission pathways.Results highlight varied damages depending on regional economic development and locations.Specifically,China and Africa could suffer the most serious comprehensive damages caused by temperature change and sea level rise,followed by India,other developing Asian countries(OthAsia),and other high-income countries(OHI).The comprehensive damage fractions for China and Africa are projected to be 15.1%and 12.5%of gross domestic product(GDP)in 2195,with corresponding cumulative damages of 124.0 trillion and 87.3 trillion United States dollars(USD)from 2005 to 2195,respectively.Meanwhile,the comprehensive damage fractions in Japan,Eurasia,and Russia are smaller and projected to be lower than 5.6%of GDP in 2195,with cumulative damages of 6.8 trillion,4.2 trillion,and 3.3 trillion USD,respectively.Additionally,coastal regions like Africa,the European Union(EU),and OHI show comparable damages for sea level rise and temperature change.In China,however,sea level-induced damages are projected to exceed those from temperature changes.Moreover,this study indicates that switching the damage modules on or off affects the regional and global emission trajectories,but the magnitude is relatively small.By 2195,global emissions under the experiments with all of the damage modules switched off,only the sea level damage module switched on,and only the temperature damage module switched on,were 3.5%,2.3%and 1.2%higher than those with all of the damage modules switched on,respectively.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2023YFA1607403,2021YFA1600201,and 2022YFA1602603)the Natural Science Foundation of China (Grant Nos.U19A2093,U2032214,and U2032163)+5 种基金the Collaborative Innovation Program of Hefei Science Center,CAS (Grant No.2019HSC-CIP 001)the Youth Innovation Promotion Association of CAS (Grant No.2021117)the Natural Science Foundation of Anhui Province (No.1908085QA15)the HFIPS Director’s Fund (Grant No.YZJJQY202304)the CASHIPS Director’s Fund (Grant No.YZJJ2022QN36)supported by the High Magnetic Field Laboratory of Anhui Province。
文摘We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magnetoresistance without any sign of saturation with a magnetic field up to 30T. We also observe a phase transition with significant anomalies in resistivity and heat capacity at T_(p)~140 K. Thermal expansion measurement reveals a subtle lattice parameter variation near Tp, i.e.,?L_(c)/L_(c)~0.062%. The structural characterization confines that there is no structure transition below and above T_(p). All these results suggest that the nonmagnetic transition of SrCu_(4-x)P_(2) could be associated with structural distortion.
基金supported by the National Key R&D Program of China(2022YFF1000100)Technology Application and Development Program for Rapid Propagation of Cow Breeding(20211117000005)+2 种基金Basic Science(Agricultural Biology)Research Center of Shaanxi(K3030922016)Ningxia Hui Autonomous Region Key R&D Projects(2021BEF01001)Natural Science Basic Research Program of Shaanxi(2022JQ-171)。
文摘The placenta plays a crucial role in successful mammalian reproduction.Ruminant animals possess a semi-invasive placenta characterized by a highly vascularized structure formed by maternal endometrial caruncles and fetal placental cotyledons,essential for full-term fetal development.The cow placenta harbors at least two trophoblast cell populations:uninucleate(UNC)and binucleate(BNC)cells.However,the limited capacity to elucidate the transcriptomic dynamics of the placental natural environment has resulted in a poor understanding of both the molecular and cellular interactions between trophoblast cells and niches,and the molecular mechanisms governing trophoblast differentiation and functionalization.To fill this knowledge gap,we employed Stereo-seq to map spatial gene expression patterns at near single-cell resolution in the cow placenta at 90 and 130 days of gestation,attaining high-resolution,spatially resolved gene expression profiles.Based on clustering and cell marker gene expression analyses,key transcription factors,including YBX1 and NPAS2,were shown to regulate the heterogeneity of trophoblast cell subpopulations.Cell communication and trajectory analysis provided a framework for understanding cell-cell interactions and the differentiation of trophoblasts into BNCs in the placental microenvironment.Differential analysis of cell trajectories identified a set of genes involved in regulation of trophoblast differentiation.Additionally,spatial modules and co-variant genes that help shape specific tissue structures were identified.Together,these findings provide foundational insights into important biological pathways critical to the placental development and function in cows.
基金supported by the National Key Research and Development Program of China(2023YFB4005401)the National Natural Science Foundation of China(52425401,52204386)the Natural Science Foundation of Heilongjiang Province(JQ2023E003).
文摘Ti-V-based alloys are proved of huge potential in storing hydrogen,but the incomplete reversible hydrogen storage capacity caused by overstability of V hydride has limited the large-scale application.In this study,Ti_(32)V_(40+x)Fe_(23-x)Mn_(5)(x=0,4,8,12,at.%)alloys were designed,and the effects of V/Fe ratio on phase constitution and hydrogen storage properties were investigated.The main phase of the alloys is body-centered cubic(BCC)phase,and the lattice constants of the BCC phase decrease with the decrease of V/Fe ratio.Moreover,C14 Laves phase exists in alloys with a Fe content of 19at.%to 23at.%.For hydrogenation,the C14 Laves phase can accelerate the hydrogen absorption rate,but the hydrogen absorption capacity is reduced.With the decrease of V/Fe ratio,the hydride gradually destabilizes.Owing to its large lattice constant and high hydrogen absorption phase content,the Ti_(32)V_(52)Fe_(11)Mn_(5)alloy shows the most enhanced hydrogen storage properties with hydrogenation and dehydrogenation capacities of 3.588wt.%at 298 K and 1.688wt.%at 343 K,respectively.The hydrogen absorption capacity of this alloy can be reserved to 3.574wt.%after 20 cycles of hydrogen absorption and desorption.
基金funded by the Science and Technology Foundation of State Grid Corporation of China(Grant No.5108-202218280A-2-397-XG).
文摘This paper focuses on the scheduling problem of workflow tasks that exhibit interdependencies.Unlike indepen-dent batch tasks,workflows typically consist of multiple subtasks with intrinsic correlations and dependencies.It necessitates the distribution of various computational tasks to appropriate computing node resources in accor-dance with task dependencies to ensure the smooth completion of the entire workflow.Workflow scheduling must consider an array of factors,including task dependencies,availability of computational resources,and the schedulability of tasks.Therefore,this paper delves into the distributed graph database workflow task scheduling problem and proposes a workflow scheduling methodology based on deep reinforcement learning(DRL).The method optimizes the maximum completion time(makespan)and response time of workflow tasks,aiming to enhance the responsiveness of workflow tasks while ensuring the minimization of the makespan.The experimental results indicate that the Q-learning Deep Reinforcement Learning(Q-DRL)algorithm markedly diminishes the makespan and refines the average response time within distributed graph database environments.In quantifying makespan,Q-DRL achieves mean reductions of 12.4%and 11.9%over established First-fit and Random scheduling strategies,respectively.Additionally,Q-DRL surpasses the performance of both DRL-Cloud and Improved Deep Q-learning Network(IDQN)algorithms,with improvements standing at 4.4%and 2.6%,respectively.With reference to average response time,the Q-DRL approach exhibits a significantly enhanced performance in the scheduling of workflow tasks,decreasing the average by 2.27%and 4.71%when compared to IDQN and DRL-Cloud,respectively.The Q-DRL algorithm also demonstrates a notable increase in the efficiency of system resource utilization,reducing the average idle rate by 5.02%and 9.30%in comparison to IDQN and DRL-Cloud,respectively.These findings support the assertion that Q-DRL not only upholds a lower average idle rate but also effectively curtails the average response time,thereby substantially improving processing efficiency and optimizing resource utilization within distributed graph database systems.
基金This study was reviewed and approved by the Experimental Animal Ethics Committee of the First Affiliated Hospital of Guangxi Medical University(Approval No.2023-E386-01).
文摘BACKGROUND Radiotherapy stands as a promising therapeutic modality for colorectal cancer(CRC);yet,the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission.AIM To elucidate the role played by microRNA-298(miR-298)in CRC radio-resistance.METHODS To establish a radio-resistant CRC cell line,HT-29 cells underwent exposure to 5 gray ionizing radiation that was followed by a 7-d recovery period.The quantification of miR-298 levels within CRC cells was conducted through quantitative RT-PCR,and protein expression determination was realized through Western blotting.Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and proliferation by clonogenic assay.Radio-induced apoptosis was discerned through flow cytometry analysis.RESULTS We observed a marked upregulation of miR-298 in radio-resistant CRC cells.MiR-298 emerged as a key determinant of cell survival following radiation exposure,as its overexpression led to a notable reduction in radiation-induced apoptosis.Intriguingly,miR-298 expression exhibited a strong correlation with CRC cell viability.Further investigation unveiled human dual-specificity tyrosine(Y)-regulated kinase 1A(DYRK1A)as miR-298’s direct target.CONCLUSION Taken together,our findings underline the role played by miR-298 in bolstering radio-resistance in CRC cells by means of DYRK1A downregulation,thereby positioning miR-298 as a promising candidate for mitigating radioresistance in CRC.
基金the National Natural Science Foundation of China(61803206)the Key R&D Program of Jiangsu Province(BE2022053-2)the Nanjing Forestry University Youth Science and Technology Innovation Fund(CX2018004)for partly funding this project.
文摘In response to the challenges posed by insufficient real-time performance and suboptimal matching accuracy of traditional feature matching algorithms within automotive panoramic surround view systems,this paper has proposed a high-performance dimension reduction parallel matching algorithm that integrates Principal Component Analysis(PCA)and Dual-Heap Filtering(DHF).The algorithm employs PCA to map the feature points into the lower-dimensional space and employs the square of Euclidean distance for feature matching,which significantly reduces computational complexity.To ensure the accuracy of feature matching,the algorithm utilizes Dual-Heap Filtering to filter and refine matched point pairs.To further enhance matching speed and make optimal use of computational resources,the algorithm introduces a multi-core parallel matching strategy,greatly elevating the efficiency of feature matching.Compared to Scale-Invariant Feature Transform(SIFT)and Speeded Up Robust Features(SURF),the proposed algorithm reduces matching time by 77%to 80%and concurrently enhances matching accuracy by 5%to 15%.Experimental results demonstrate that the proposed algorithmexhibits outstanding real-time matching performance and accuracy,effectivelymeeting the feature-matching requirements of automotive panoramic surround view systems.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant No. 2022D01B221)he Xinjiang Tianchi Talent Program (2023)+4 种基金the NSRT operators for their assistance during the observationspartly supported by the OperationMaintenance and Upgrading Fund for Astronomical Telescopes and Facility Instrumentsbudgeted from the Ministry of Finance of China and administrated by the Chinese Academy of Sciencesthe Urumqi Nanshan Astronomy and Deep Space Exploration Observation and Research Station of Xinjiang (Grant No. XJYWZ2303)
文摘There have been several studies on sulfur depletion in dense cores like TMC-1(Taurus Molecular Cloud 1),employing updated reaction networks for sulfur species to explain the missing sulfur in the gas within dense clouds.Most of these studies used a C/O ratio of 0.7 or lower.We present NSRT(NanShan 26m Radio Telescope)observations of TMC-1 alongside results from time-dependent chemical simulations using an updated chemical network.Our findings highlight the impact of the C/O ratio on the gas-phase evolution of C2S and C3S.The simulation results show that the C/O ratio is an important parameter,playing a fundamental role in determining the gas-phase abundances of sulfur species in dense cores.
基金Scientific Research Project of Health Industry in Hainan Province(21A200439).
文摘[Objectives]To analyze the relationship between serum 8-hydroxydeoxyguanosine(8-OHdG),heart fatty acid-binding protein(H-FABP),C-reactive protein(CRP)levels and clinical efficacy and short-term prognosis in patients with ischemic cardiomyopathy.[Methods]The clinical data of 100 patients with ischemic cardiomyopathy from October 2021 to November 2022 were retrospectively analyzed,and the serum levels of 8-OHdG,H-FABP and CRP were compared before and one week after treatment.The patients were followed up for 12 months after discharge,and the incidence of major adverse cardiovascular events(MACE)was counted during the follow-up period.Univariate and multivariate Logistic regression analysis were used to analyze the prognostic factors of patients with ischemic cardiomyopathy in the near future,and the predictive value of serum 8-OHdG,H-FABP and CRP levels for the prognosis of patients was evaluated by ROC curve.[Results]After 1 week of treatment,the serum levels of 8-OHdG,H-FABP and CRP in patients with ischemic cardiomyopathy were significantly lower than those before treatment(P<0.05).During the follow-up period,34 patients developed MACE;the serum levels of 8-OHdG,H-FABP and CRP in the MACE group were higher than those in the non-MACE group,and the differences were statistically significant(P<0.05).Multivariate Logistic regression analysis showed that 8-OHdG,H-FABP and CRP were the risk factors of MACE in patients with ischemic cardiomyopathy(P<0.05).ROC curve analysis showed that the combined prediction of 8-OHdG,H-FABP and CRP for MACE in patients with ischemic cardiomyopathy was higher than that of CRP,H-FABP and 8-OHdG alone(P<0.05).[Conclusions]8-OHdG,H-FABP and CRP are closely related to the clinical efficacy and short-term prognosis of patients with ischemic cardiomyopathy,and the detection of serum 8-OHdG,H-FABP and CRP levels can help to evaluate the clinical efficacy and short-term prognosis of patients with ischemic cardiomyopathy.