The tree shrew(Tupaia belangeri)has long been proposed as a suitable alternative to non-human primates(NHPs)in biomedical and laboratory research due to its close evolutionary relationship with primates.In recent year...The tree shrew(Tupaia belangeri)has long been proposed as a suitable alternative to non-human primates(NHPs)in biomedical and laboratory research due to its close evolutionary relationship with primates.In recent years,significant advances have facilitated tree shrew studies,including the determination of the tree shrew genome,genetic manipulation using spermatogonial stem cells,viral vector-mediated gene delivery,and mapping of the tree shrew brain atlas.However,the limited availability of tree shrews globally remains a substantial challenge in the field.Additionally,determining the key questions best answered using tree shrews constitutes another difficulty.Tree shrew models have historically been used to study hepatitis B virus(HBV)and hepatitis C virus(HCV)infection,myopia,and psychosocial stress-induced depression,with more recent studies focusing on developing animal models for infectious and neurodegenerative diseases.Despite these efforts,the impact of tree shrew models has not yet matched that of rodent or NHP models in biomedical research.This review summarizes the prominent advancements in tree shrew research and reflects on the key biological questions addressed using this model.We emphasize that intensive dedication and robust international collaboration are essential for achieving breakthroughs in tree shrew studies.The use of tree shrews as a unique resource is expected to gain considerable attention with the application of advanced techniques and the development of viable animal models,meeting the increasing demands of life science and biomedical research.展开更多
A letter to the editor constitutes a short communication addressing a range of topics pertinent to the readership of a journal(Dkhar,2018).This format offers several benefits,such as timeliness,accessibility,innovatio...A letter to the editor constitutes a short communication addressing a range of topics pertinent to the readership of a journal(Dkhar,2018).This format offers several benefits,such as timeliness,accessibility,innovation,and conciseness,thereby serving as an effective means to disseminate cuttingedge scientific ideas.Over the past five years,there has been a considerable increase in the number of letters published,representing the highest growth rate(approximately 20%)observed in the last three decades(Figure 1A).In the field of academic publishing,letters to the editor are typically more concise than typical research papers.展开更多
It is not difficult to imagine humankind as stewards and custodians of the vast,complex,unique,and awe-inspiring property called Planet Earth.We are duty-bound to take good care of this priceless property,for our own ...It is not difficult to imagine humankind as stewards and custodians of the vast,complex,unique,and awe-inspiring property called Planet Earth.We are duty-bound to take good care of this priceless property,for our own well-being,and for the well-being of our future generations.We take stock of the value of our property by understanding its fragile biodiversity;and we safeguard its value by monitoring and protecting it.Just as a piece of real estate is livable only if it is wellsupported by utilities and other municipal services,we have a duty to ensure that the natural habitats and the crucial ecological services they provide are in tip-top conditions.This requires a deep understanding how an intricate,vibrant,and resilient ecosystem works,and how natural forces and manmade decisions can impact its sustainability,both positively and negatively.展开更多
Tree shrews(Tupaia belangeri chinensis)share a close relationship to primates and have been widely used in biomedical research.We previously established a spermatogonial stem cell(SSC)-based gene editing platform to g...Tree shrews(Tupaia belangeri chinensis)share a close relationship to primates and have been widely used in biomedical research.We previously established a spermatogonial stem cell(SSC)-based gene editing platform to generate transgenic tree shrews.However,the influences of long-term expansion on tree shrew SSC spermatogenesis potential remain unclear.Here,we examined the in vivo spermatogenesis potential of tree shrew SSCs cultured across different passages.We found that SSCs lost spermatogenesis ability after long-term expansion(>50 passages),as indicated by the failure to colonize the seminiferous epithelium and generate donor spermatogonia(SPG)-derivedspermatocytesor spermatids marking spermatogenesis.RNA sequencing(RNA-seq)analysis of undifferentiated SPGs across different passages revealed significant gene expression changes after sub-culturing primary SPG lines for more than 40 passages on feeder layers.Specifically,DNA damage response and repair genes(e.g.,MRE11,SMC3,BLM,and GEN1)were down-regulated,whereas genes associated with mitochondrial function(e.g.,NDUFA9,NDUFA8,NDUFA13,and NDUFB8)were up-regulated after expansion.The DNA damage accumulation and mitochondrial dysfunction were experimentally validated in high-passage cells.Supplementation with nicotinamide adenine dinucleotide(NAD+)precursor nicotinamide riboside(NR)exhibited beneficial effects by reducing DNA damage accumulation and mitochondrial dysfunction in SPG elicited by long-term culture.Our research presents a comprehensive analysis of the genetic and physiological attributes critical for the sustained expansion of undifferentiated SSCs in tree shrews and proposes an effective strategy for extended in vitro maintenance.展开更多
The molecular etiologies of many prevalent diseases stem from genetic variations that arise during evolution and natural selection,as well as from environmental effects.The study of genetic diversity in human populati...The molecular etiologies of many prevalent diseases stem from genetic variations that arise during evolution and natural selection,as well as from environmental effects.The study of genetic diversity in human populations and analysis of molecular evolution in primates and other animal species can provide important insights regarding the pathogenesis of common diseases in both human and animal populations.展开更多
Since its establishment in 1980, Zoological Research(ZR) has continued to strive forward with the enthusiastic and generous support of every author and reader. ZR has been a loyal companion to many generations of rese...Since its establishment in 1980, Zoological Research(ZR) has continued to strive forward with the enthusiastic and generous support of every author and reader. ZR has been a loyal companion to many generations of researchers and scholars,who have not only witnessed the evolution of ZR, but also devoted themselves to helping ZR grow(Yao & Jiang, 2021).Here, at the beginning of a fresh year, we are honored to have the opportunity to express our deepest appreciation to you all.展开更多
At the beginning of a wonderful new year, we look back at Zoological Research (ZR) in 2017. We are very grateful to all our readers and authors for your dedication and continued support of ZR. Your ideas, input, and...At the beginning of a wonderful new year, we look back at Zoological Research (ZR) in 2017. We are very grateful to all our readers and authors for your dedication and continued support of ZR. Your ideas, input, and enthusiasm have been of immense value in helping us to improve the journal. Here, we would like to share a few memorable events and people of the past year.展开更多
The Chinese tree shrew (Tupaia belangeri chinensis) a squirrel-like and rat-sized mammal, has a wide distribution in Southeast Asia, South and Southwest China and has many unique characteristics that make it suitabl...The Chinese tree shrew (Tupaia belangeri chinensis) a squirrel-like and rat-sized mammal, has a wide distribution in Southeast Asia, South and Southwest China and has many unique characteristics that make it suitable for use as an experimental animal. There have been many studies using the tree shrew (Tupaia belangeri) aimed at increasing our understanding of fundamental biological mechanisms and for the modeling of human diseases and therapeutic responses. The recent release of a publicly available annotated genome sequence of the Chinese tree shrew and its genome database (www.treeshrewdb.org) has offered a solid base from which it is possible to elucidate the basic biological properties and create animal models using this species. The extensive characterization of key factors and signaling pathways in the immune and nervous systems has shown that tree shrews possess both conserved and unique features relative to primates. Hitherto, the tree shrew has been successfully used to create animal models for myopia, depression, breast cancer, alcohol-induced or non-alcoholic fatty liver diseases, herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV) infections, to name a few. The recent successful genetic manipulation of the tree shrew has opened a new avenue for the wider usage of this animal in biomedical research. In this opinion paper, I attempt to summarize the recent research advances that have used the Chinese tree shrew, with a focus on the new knowledge obtained by using the biological properties identified using the tree shrew genome, a proposal for the genome-based approach for creating animal models, and the genetic manipulation of the tree shrew. With more studies using this species and the application of cutting-edge gene editing techniques, the tree shrew will continue to be under the spot light as a viable animal model for investigating the basis of many different human diseases.展开更多
Chinese tree shrews (Tupaia belangeri chinensis) have become an increasingly important experimental animal in biomedical research due to their close relationship to primates. An accurately sequenced and assembled geno...Chinese tree shrews (Tupaia belangeri chinensis) have become an increasingly important experimental animal in biomedical research due to their close relationship to primates. An accurately sequenced and assembled genome is essential for understanding the genetic features and biology of this animal. In this study, we used long-read single-molecule sequencing and high-throughput chromosome conformation capture (Hi-C) technology to obtain a high-qualitychromosome-scale scaffolding of the Chinese tree shrew genome. The new reference genome (KIZ version 2: TS_2.0) resolved problems in presently available tree shrew genomes and enabled accurate identification of large and complex repeat regions, gene structures, and species-specific genomic structural variants. In addition, by sequencing the genomes of six Chinese tree shrew individuals, we produced a comprehensive map of 12.8 M single nucleotide polymorphisms and confirmed that the major histocompatibility complex (MHC) loci and immunoglobulin gene family exhibited high nucleotide diversity in the tree shrew genome. We updated the tree shrew genome database (TreeshrewDB v2.0: http://www.treeshrewdb.org) to include the genome annotation information and genetic variations. The new high-quality reference genome of the Chinese tree shrew and the updated TreeshrewDB will facilitate the use of this animal in many different fields of research.展开更多
Thecoronavirusdisease2019(COVID-19)pandemic continues to pose a global threat to the human population. Identifying animal species susceptible to infection with the SARS-CoV-2/HCoV-19 pathogen is essential for controll...Thecoronavirusdisease2019(COVID-19)pandemic continues to pose a global threat to the human population. Identifying animal species susceptible to infection with the SARS-CoV-2/HCoV-19 pathogen is essential for controlling the outbreak and for testing valid prophylactics or therapeutics based on animal model studies. Here,different aged Chinese tree shrews(adult group, 1 year old;old group, 5–6 years old), which are close relatives to primates, were infected with SARS-CoV-2. X-ray, viral shedding, laboratory, and histological analyses were performed on different days postinoculation(dpi). Results showed that Chinese tree shrews could be infected by SARS-CoV-2. Lung infiltrates were visible in X-ray radiographs in most infected animals. Viral RNA was consistently detected in lung tissues from infected animals at 3,5, and 7 dpi, along with alterations in related parameters from routine blood tests and serum biochemistry, including increased levels of aspartate aminotransferase(AST) and blood urea nitrogen(BUN). Histological analysis of lung tissues from animals at 3 dpi(adult group) and 7 dpi(old group) showed thickened alveolar septa and interstitial hemorrhage. Several differences were found between the two different aged groups in regard to viral shedding peak. Our results indicate that Chinese tree shrews have the potential to be used as animal models for SARS-CoV-2 infection.展开更多
Non-human primates (NHPs) are phylogenetically close to humans, with many similarities in terms of physiology, anatomy, immunology, as well as neurology, all of which make them excellent experimental models for biom...Non-human primates (NHPs) are phylogenetically close to humans, with many similarities in terms of physiology, anatomy, immunology, as well as neurology, all of which make them excellent experimental models for biomedical research. Compared with developed countries in America and Europe, China has relatively rich primate resources and has continually aimed to develop NHPs resources. Currently, China is a leading producer and a major supplier of NHPs on the international market. However, there are some deficiencies in feeding and management that have hampered China's growth in NHP research and materials. Nonetheless, China has recently established a number of primate animal models for human diseases and achieved marked scientific progress on infectious diseases, cardiovascular diseases, endocrine diseases, reproductive diseases, neurological diseases, and ophthalmic diseases, etc. Advances in these fields via NHP models will undoubtedly further promote the development of China's life sciences and pharmaceutical industry, and enhance China's position as a leader in NHP research. This review covers the current status of NHPs in China and other areas, highlighting the latest developments in disease models using NHPs, as well as outlining basic problems and proposing effective to better utilize NHP resources and further foster NHP research in China.展开更多
The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by infection with human coronavirus 2019 (HCoV-19/SARS-CoV-2/2019-nCoV), is a global threat to the human population. Here, we briefly summarize the a...The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by infection with human coronavirus 2019 (HCoV-19/SARS-CoV-2/2019-nCoV), is a global threat to the human population. Here, we briefly summarize the available data for the zoonotic origins of HCoV-19, with reference to the other two epidemics of highly virulent coronaviruses, SARSCoV and MERS-CoV, which cause severe pneumonia in humans. We propose to intensify future efforts for tracing the origins of HCoV-19, which is a very important scientific question for the control and prevention of the pandemic.展开更多
The Chinese tree shrew(Tupaia belangeri chinensis)is emerging as an important experimental animal in multiple fields of biomedical research.Comprehensive reference genome annotation for both mRNA and long non-coding R...The Chinese tree shrew(Tupaia belangeri chinensis)is emerging as an important experimental animal in multiple fields of biomedical research.Comprehensive reference genome annotation for both mRNA and long non-coding RNA(lncRNA)is crucial for developing animal models using this species.In the current study,we collected a total of 234 high-quality RNA sequencing(RNA-seq)datasets and two long-read isoform sequencing(ISO-seq)datasets and improved the annotation of our previously assembled high-quality chromosomelevel tree shrew genome.We obtained a total of 3514 newly annotated coding genes and 50576 lncRNA genes.We also characterized the tissuespecific expression patterns and alternative splicing patterns of mRNAs and lncRNAs and mapped the orthologous relationships among 11 mammalian species using the current annotated genome.We identified 144 tree shrew-specific gene families,including interleukin 6(IL6)and STT3 oligosaccharyltransferase complex catalytic subunit B(STT3B),which underwent significant changes in size.Comparison of the overall expression patterns in tissues and pathways across four species(human,rhesus monkey,tree shrew,and mouse)indicated that tree shrews are more similar to primates than to mice at the tissue-transcriptome level.Notably,the newly annotated purine rich element binding protein A(PURA)gene and the STT3B gene family showed dysregulation upon viral infection.The updated version of the tree shrew genome annotation(KIZ version 3:TS_3.0)is available at http://www.treeshrewdb.org and provides an essential reference for basic and biomedical studies using tree shrew animal models.展开更多
Infection with severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) causes diverse clinical manifestations and tissue injuries in multiple organs.However, cellular and molecular understanding of SARS-CoV-2 infe...Infection with severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) causes diverse clinical manifestations and tissue injuries in multiple organs.However, cellular and molecular understanding of SARS-CoV-2 infection-associated pathology and immune defense features in different organs remains incomplete. Here, we profiled approximately 77 000single-nucleus transcriptomes of the lung, liver,kidney, and cerebral cortex in rhesus macaques(Macaca mulatta) infected with SARS-CoV-2 and healthy controls. Integrated analysis of the multiorgan dataset suggested that the liver harbored the strongest global transcriptional alterations. We observed prominent impairment in lung epithelial cells, especially in AT2 and ciliated cells, and evident signs of fibrosis in fibroblasts. These lung injury characteristics are similar to those reported in patients with coronavirus disease 2019(COVID-19).Furthermore, we found suppressed MHC class I/II molecular activity in the lung, inflammatory response in the liver, and activation of the kynurenine pathway,which induced the development of an immunosuppressive microenvironment. Analysis of the kidney dataset highlighted tropism of tubule cells to SARS-CoV-2, and we found membranous nephropathy(an autoimmune disease) caused by podocyte dysregulation. In addition, we identified the pathological states of astrocytes and oligodendrocytes in the cerebral cortex, providing molecular insights into COVID-19-related neurological implications. Overall, our multi-organ single-nucleus transcriptomic survey of SARS-CoV-2-infected rhesus macaques broadens our understanding of disease features and antiviral immune defects caused by SARS-CoV-2 infection,which may facilitate the development of therapeutic interventions for COVID-19.展开更多
DEAR EDITOR,The Chinese tree shrew(Tupaia belangeri chinensis)is a small mammal closely related to primates.It has a small body size,low maintenance cost,and a relatively short reproductive cycle,all of which has made...DEAR EDITOR,The Chinese tree shrew(Tupaia belangeri chinensis)is a small mammal closely related to primates.It has a small body size,low maintenance cost,and a relatively short reproductive cycle,all of which has made it the ideal model for the study of a variety of human diseases.In this study,we compared the anatomy of the skin of the Chinese tree shrew with that of the rhesus macaque,mouse and human,with the intention of providing the basic data required for the creation of skin disease models using this animal.Paraffin sections,hematoxylin-eosin(H&E)staining,masson staining and immunohistochemical techniques were used to examine the dorsal skin structure of the Chinese tree shrew.The epidermis was shown to be composed of 1–2 layers of cells.There were hair follicles,sebaceous glands and sweat glands in the dermis and the subcutaneous tissue,with apocrine glands being more common than eccrine glands.Both Keratin5(KRT5)and Keratin10(KRT10)were expressed in the skin of the Chinese tree shrew,with a localization in the cytoplasm.Overall,the skin morphology and histology of the Chinese tree shrew was basically the same as that of the human.We propose that the Chinese tree shrew has a strong potential to be used for creating animal models to help elucidate the molecular mechanisms underlying a variety of skin diseases.展开更多
The Chinese tree shrew (Tupaia belangeri chinensis) is a small experimental animal with a close affinity to primates. This species has long been proposed to be an alternative experimental animal to primates in biomedi...The Chinese tree shrew (Tupaia belangeri chinensis) is a small experimental animal with a close affinity to primates. This species has long been proposed to be an alternative experimental animal to primates in biomedical research. Despite decades of study, there is no pure breed for this animal, and the overall genetic diversity of wild tree shrews remains largely unknown. In order to obtain a set of genetic markers for evaluating the genetic diversity of tree shrew wild populations and tracing the lineages in inbreeding populations, we developed 12 polymorphic microsatellite markers from the genomic DNA of the tree shrew. An analysis of a wild population of 117 individuals collected from the suburb of Kunming, China, showed that these loci exhibited a highly expected heterozygosity (0.616). These 12 microsatellites were sufficient for individual identification and parentage analysis. The microsatellite markers developed in this study will be of use in evaluating genetic diversity and lineage tracing for the tree shrew.展开更多
We recently identified a cynomolgus monkey with naturally occurring Parkinson's disease(PD), indicating that PD may not be a uniquely human disease(Li et al., 2020). In our previous study, four lines of evidence, ...We recently identified a cynomolgus monkey with naturally occurring Parkinson's disease(PD), indicating that PD may not be a uniquely human disease(Li et al., 2020). In our previous study, four lines of evidence, including typical PD clinical symptoms, pharmacological responses, pathological hallmarks, and genetic mutations, strongly supported the identification of a monkey with spontaneous PD(Figure 1).展开更多
The Chinese tree shrew(Tupaia belangeri chinensis)is a small experimental animal with a close affinity to primates.This species has long been proposed to be an alternative experimental animal to primates in biomedical...The Chinese tree shrew(Tupaia belangeri chinensis)is a small experimental animal with a close affinity to primates.This species has long been proposed to be an alternative experimental animal to primates in biomedical research.Despite decades of study,there is no pure breed for this animal,and the overall genetic diversity of wild tree shrews remains largely unknown.In order to obtain a set of genetic markers for evaluating the genetic diversity of tree shrew wild populations and tracing the lineages in inbreeding populations,we developed 12 polymorphic microsatellite markers from the genomic DNA of the tree shrew.An analysis of a wild population of 117 individuals collected from the suburb of Kunming,China,showed that these loci exhibited a highly expected heterozygosity(0.616).These 12 microsatellites were sufficient for individual identification and parentage analysis.The microsatellite markers developed in this study will be of use in evaluating genetic diversity and lineage tracing for the tree shrew.展开更多
Understanding the zoonotic origin and evolution history of SARS-CoV-2 will provide critical insights for alerting and preventing future outbreaks.A significant gap remains for the possible role of pangolins as a reser...Understanding the zoonotic origin and evolution history of SARS-CoV-2 will provide critical insights for alerting and preventing future outbreaks.A significant gap remains for the possible role of pangolins as a reservoir of SARS-CoV-2 related coronaviruses(SC2r-CoVs).Here,we screened SC2r-CoVs in 172 samples from 163 pangolin individuals of four species,and detected positive signals in muscles of four Manis javanica and,for the first time,one M.pentadactyla.Phylogeographic analysis of pangolin mitochondrial DNA traced their origins from Southeast Asia.Using in-solution hybridization capture sequencing,we assembled a partial pangolin SC2r-CoV(pangolin-CoV)genome sequence of 22895 bp(MP20)from the M.pentadactyla sample.Phylogenetic analyses revealed MP20 was very closely related to pangolin-CoVs that were identified in M.javanica seized by Guangxi Customs.A genetic contribution of bat coronavirus to pangolin-CoVs via recombination was indicated.Our analysis revealed that the genetic diversity of pangolin-CoVs is substantially higher than previously anticipated.Given the potential infectivity of pangolin-CoVs,the high genetic diversity of pangolin-CoVs alerts the ecological risk of zoonotic evolution and transmission of pathogenic SC2r-CoVs.展开更多
In honeybee (Apis mellifera) colonies, queens and workers are altemative forms of the adult female honeybee that develop from genetically identical zygotes but that depend on differential nourishment. Queens and wor...In honeybee (Apis mellifera) colonies, queens and workers are altemative forms of the adult female honeybee that develop from genetically identical zygotes but that depend on differential nourishment. Queens and workers display distinct morphologies, anatomies and behavior, better known as caste differentiation. Despite some basic insights, the exact mechanism responsible for this phenomenon, especially at the molecular level, remains unclear although some progress has been achieved. In this study, we examined mRNA levels of the TOR (target of rapamycin) and Dnmt3 (DNA methyltransferase 3) genes, closely related to caste differentiation in honeybees. We also investigated mRNA expression of the S6K (similar to RPS6-p70-protein kinase) gene linked closely to organismal growth and development in queen and worker larvae (1-day and 3-day old). Last, we investigated the methylation status of these three genes in corresponding castes. We found no difference in mRNA expression for the three genes between 1st instar queen and worker larvae; however, 3rd instar queen larvae had a higher level of TOR mRNA than worker larvae. Methylation levels of all three genes were lower in queen larvae than worker larvae but the differences were not statistically significant. These findings provide basic data for broadening our understanding of caste differentiation in female honeybees.展开更多
基金supported by the STI2030-Major Projects(2021ZD0200900 to Y.G.Y.)"Light of West China" Program of the Chinese Academy of Sciences(xbzg-zdsys-202302 to Y.G.Y.)
文摘The tree shrew(Tupaia belangeri)has long been proposed as a suitable alternative to non-human primates(NHPs)in biomedical and laboratory research due to its close evolutionary relationship with primates.In recent years,significant advances have facilitated tree shrew studies,including the determination of the tree shrew genome,genetic manipulation using spermatogonial stem cells,viral vector-mediated gene delivery,and mapping of the tree shrew brain atlas.However,the limited availability of tree shrews globally remains a substantial challenge in the field.Additionally,determining the key questions best answered using tree shrews constitutes another difficulty.Tree shrew models have historically been used to study hepatitis B virus(HBV)and hepatitis C virus(HCV)infection,myopia,and psychosocial stress-induced depression,with more recent studies focusing on developing animal models for infectious and neurodegenerative diseases.Despite these efforts,the impact of tree shrew models has not yet matched that of rodent or NHP models in biomedical research.This review summarizes the prominent advancements in tree shrew research and reflects on the key biological questions addressed using this model.We emphasize that intensive dedication and robust international collaboration are essential for achieving breakthroughs in tree shrew studies.The use of tree shrews as a unique resource is expected to gain considerable attention with the application of advanced techniques and the development of viable animal models,meeting the increasing demands of life science and biomedical research.
文摘A letter to the editor constitutes a short communication addressing a range of topics pertinent to the readership of a journal(Dkhar,2018).This format offers several benefits,such as timeliness,accessibility,innovation,and conciseness,thereby serving as an effective means to disseminate cuttingedge scientific ideas.Over the past five years,there has been a considerable increase in the number of letters published,representing the highest growth rate(approximately 20%)observed in the last three decades(Figure 1A).In the field of academic publishing,letters to the editor are typically more concise than typical research papers.
文摘It is not difficult to imagine humankind as stewards and custodians of the vast,complex,unique,and awe-inspiring property called Planet Earth.We are duty-bound to take good care of this priceless property,for our own well-being,and for the well-being of our future generations.We take stock of the value of our property by understanding its fragile biodiversity;and we safeguard its value by monitoring and protecting it.Just as a piece of real estate is livable only if it is wellsupported by utilities and other municipal services,we have a duty to ensure that the natural habitats and the crucial ecological services they provide are in tip-top conditions.This requires a deep understanding how an intricate,vibrant,and resilient ecosystem works,and how natural forces and manmade decisions can impact its sustainability,both positively and negatively.
基金supported by the Ministry of Science and Technology of China (2021YFF0702700,STI2030-Major Project2021ZD0200900)National Natural Science Foundation of China (U2102202,U1702284)Yunnan Province (202305AH340006)。
文摘Tree shrews(Tupaia belangeri chinensis)share a close relationship to primates and have been widely used in biomedical research.We previously established a spermatogonial stem cell(SSC)-based gene editing platform to generate transgenic tree shrews.However,the influences of long-term expansion on tree shrew SSC spermatogenesis potential remain unclear.Here,we examined the in vivo spermatogenesis potential of tree shrew SSCs cultured across different passages.We found that SSCs lost spermatogenesis ability after long-term expansion(>50 passages),as indicated by the failure to colonize the seminiferous epithelium and generate donor spermatogonia(SPG)-derivedspermatocytesor spermatids marking spermatogenesis.RNA sequencing(RNA-seq)analysis of undifferentiated SPGs across different passages revealed significant gene expression changes after sub-culturing primary SPG lines for more than 40 passages on feeder layers.Specifically,DNA damage response and repair genes(e.g.,MRE11,SMC3,BLM,and GEN1)were down-regulated,whereas genes associated with mitochondrial function(e.g.,NDUFA9,NDUFA8,NDUFA13,and NDUFB8)were up-regulated after expansion.The DNA damage accumulation and mitochondrial dysfunction were experimentally validated in high-passage cells.Supplementation with nicotinamide adenine dinucleotide(NAD+)precursor nicotinamide riboside(NR)exhibited beneficial effects by reducing DNA damage accumulation and mitochondrial dysfunction in SPG elicited by long-term culture.Our research presents a comprehensive analysis of the genetic and physiological attributes critical for the sustained expansion of undifferentiated SSCs in tree shrews and proposes an effective strategy for extended in vitro maintenance.
文摘The molecular etiologies of many prevalent diseases stem from genetic variations that arise during evolution and natural selection,as well as from environmental effects.The study of genetic diversity in human populations and analysis of molecular evolution in primates and other animal species can provide important insights regarding the pathogenesis of common diseases in both human and animal populations.
文摘Since its establishment in 1980, Zoological Research(ZR) has continued to strive forward with the enthusiastic and generous support of every author and reader. ZR has been a loyal companion to many generations of researchers and scholars,who have not only witnessed the evolution of ZR, but also devoted themselves to helping ZR grow(Yao & Jiang, 2021).Here, at the beginning of a fresh year, we are honored to have the opportunity to express our deepest appreciation to you all.
文摘At the beginning of a wonderful new year, we look back at Zoological Research (ZR) in 2017. We are very grateful to all our readers and authors for your dedication and continued support of ZR. Your ideas, input, and enthusiasm have been of immense value in helping us to improve the journal. Here, we would like to share a few memorable events and people of the past year.
基金supported by the grant of the National Natural Science Foundation of China(NSFC U1402224)the Chinese Academy of Sciences(CAS zsys-02)
文摘The Chinese tree shrew (Tupaia belangeri chinensis) a squirrel-like and rat-sized mammal, has a wide distribution in Southeast Asia, South and Southwest China and has many unique characteristics that make it suitable for use as an experimental animal. There have been many studies using the tree shrew (Tupaia belangeri) aimed at increasing our understanding of fundamental biological mechanisms and for the modeling of human diseases and therapeutic responses. The recent release of a publicly available annotated genome sequence of the Chinese tree shrew and its genome database (www.treeshrewdb.org) has offered a solid base from which it is possible to elucidate the basic biological properties and create animal models using this species. The extensive characterization of key factors and signaling pathways in the immune and nervous systems has shown that tree shrews possess both conserved and unique features relative to primates. Hitherto, the tree shrew has been successfully used to create animal models for myopia, depression, breast cancer, alcohol-induced or non-alcoholic fatty liver diseases, herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV) infections, to name a few. The recent successful genetic manipulation of the tree shrew has opened a new avenue for the wider usage of this animal in biomedical research. In this opinion paper, I attempt to summarize the recent research advances that have used the Chinese tree shrew, with a focus on the new knowledge obtained by using the biological properties identified using the tree shrew genome, a proposal for the genome-based approach for creating animal models, and the genetic manipulation of the tree shrew. With more studies using this species and the application of cutting-edge gene editing techniques, the tree shrew will continue to be under the spot light as a viable animal model for investigating the basis of many different human diseases.
基金supported by the National Natural Science Foundation of China(U1402224,31601010,81571998,and U1702284)Yunnan Province(2015HA038 and 2018FB054)Chinese Academy of Sciences(CAS zsys-02)
文摘Chinese tree shrews (Tupaia belangeri chinensis) have become an increasingly important experimental animal in biomedical research due to their close relationship to primates. An accurately sequenced and assembled genome is essential for understanding the genetic features and biology of this animal. In this study, we used long-read single-molecule sequencing and high-throughput chromosome conformation capture (Hi-C) technology to obtain a high-qualitychromosome-scale scaffolding of the Chinese tree shrew genome. The new reference genome (KIZ version 2: TS_2.0) resolved problems in presently available tree shrew genomes and enabled accurate identification of large and complex repeat regions, gene structures, and species-specific genomic structural variants. In addition, by sequencing the genomes of six Chinese tree shrew individuals, we produced a comprehensive map of 12.8 M single nucleotide polymorphisms and confirmed that the major histocompatibility complex (MHC) loci and immunoglobulin gene family exhibited high nucleotide diversity in the tree shrew genome. We updated the tree shrew genome database (TreeshrewDB v2.0: http://www.treeshrewdb.org) to include the genome annotation information and genetic variations. The new high-quality reference genome of the Chinese tree shrew and the updated TreeshrewDB will facilitate the use of this animal in many different fields of research.
基金partly supported by the National Key R&D Program of China(2020YFC0842000 to Y.T.Z.)National Natural Science Foundation of China(U1902215 to Y.G.Y.)+2 种基金National Science and Technology Major Projects of Infectious Disease Funds(2017ZX10304402 to Y.T.Z.)Yunnan Province(2018FB046 to D.D.Y.)CAS“Light of West China”Program(xbzg-zdsys-201909to Y.G.Y.and Y.T.Z.)。
文摘Thecoronavirusdisease2019(COVID-19)pandemic continues to pose a global threat to the human population. Identifying animal species susceptible to infection with the SARS-CoV-2/HCoV-19 pathogen is essential for controlling the outbreak and for testing valid prophylactics or therapeutics based on animal model studies. Here,different aged Chinese tree shrews(adult group, 1 year old;old group, 5–6 years old), which are close relatives to primates, were infected with SARS-CoV-2. X-ray, viral shedding, laboratory, and histological analyses were performed on different days postinoculation(dpi). Results showed that Chinese tree shrews could be infected by SARS-CoV-2. Lung infiltrates were visible in X-ray radiographs in most infected animals. Viral RNA was consistently detected in lung tissues from infected animals at 3,5, and 7 dpi, along with alterations in related parameters from routine blood tests and serum biochemistry, including increased levels of aspartate aminotransferase(AST) and blood urea nitrogen(BUN). Histological analysis of lung tissues from animals at 3 dpi(adult group) and 7 dpi(old group) showed thickened alveolar septa and interstitial hemorrhage. Several differences were found between the two different aged groups in regard to viral shedding peak. Our results indicate that Chinese tree shrews have the potential to be used as animal models for SARS-CoV-2 infection.
基金supported by the National Natural Science Foundation of China(81172876,81273251,U1202228,81471620)the National Special Science Research Program of China(2012CBA01305)+1 种基金the National Science and Technology Major Project(2013ZX10001-002,2012ZX10001-007)the Knowledge Innovation Program of CAS(KSCX2-EW-R-13,KJZD-EW-L10-02)
文摘Non-human primates (NHPs) are phylogenetically close to humans, with many similarities in terms of physiology, anatomy, immunology, as well as neurology, all of which make them excellent experimental models for biomedical research. Compared with developed countries in America and Europe, China has relatively rich primate resources and has continually aimed to develop NHPs resources. Currently, China is a leading producer and a major supplier of NHPs on the international market. However, there are some deficiencies in feeding and management that have hampered China's growth in NHP research and materials. Nonetheless, China has recently established a number of primate animal models for human diseases and achieved marked scientific progress on infectious diseases, cardiovascular diseases, endocrine diseases, reproductive diseases, neurological diseases, and ophthalmic diseases, etc. Advances in these fields via NHP models will undoubtedly further promote the development of China's life sciences and pharmaceutical industry, and enhance China's position as a leader in NHP research. This review covers the current status of NHPs in China and other areas, highlighting the latest developments in disease models using NHPs, as well as outlining basic problems and proposing effective to better utilize NHP resources and further foster NHP research in China.
文摘The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by infection with human coronavirus 2019 (HCoV-19/SARS-CoV-2/2019-nCoV), is a global threat to the human population. Here, we briefly summarize the available data for the zoonotic origins of HCoV-19, with reference to the other two epidemics of highly virulent coronaviruses, SARSCoV and MERS-CoV, which cause severe pneumonia in humans. We propose to intensify future efforts for tracing the origins of HCoV-19, which is a very important scientific question for the control and prevention of the pandemic.
基金This study was supported by the National Natural Science Foundation of China(U1902215 to Y.G.Y.and 31970542 to Y.F.)Chinese Academy of Sciences(Light of West China Program xbzg-zdsys-201909 to Y.G.Y.)Yunnan Province(202001AS070023 and 2018FB046 to D.D.Y.and 202002AA100007 to Y.G.Y.)。
文摘The Chinese tree shrew(Tupaia belangeri chinensis)is emerging as an important experimental animal in multiple fields of biomedical research.Comprehensive reference genome annotation for both mRNA and long non-coding RNA(lncRNA)is crucial for developing animal models using this species.In the current study,we collected a total of 234 high-quality RNA sequencing(RNA-seq)datasets and two long-read isoform sequencing(ISO-seq)datasets and improved the annotation of our previously assembled high-quality chromosomelevel tree shrew genome.We obtained a total of 3514 newly annotated coding genes and 50576 lncRNA genes.We also characterized the tissuespecific expression patterns and alternative splicing patterns of mRNAs and lncRNAs and mapped the orthologous relationships among 11 mammalian species using the current annotated genome.We identified 144 tree shrew-specific gene families,including interleukin 6(IL6)and STT3 oligosaccharyltransferase complex catalytic subunit B(STT3B),which underwent significant changes in size.Comparison of the overall expression patterns in tissues and pathways across four species(human,rhesus monkey,tree shrew,and mouse)indicated that tree shrews are more similar to primates than to mice at the tissue-transcriptome level.Notably,the newly annotated purine rich element binding protein A(PURA)gene and the STT3B gene family showed dysregulation upon viral infection.The updated version of the tree shrew genome annotation(KIZ version 3:TS_3.0)is available at http://www.treeshrewdb.org and provides an essential reference for basic and biomedical studies using tree shrew animal models.
基金supported by the National Basic Research Program of China(2020YFA0804000,2020YFC0842000,2020YFA0112200,2021YFC2301703)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB32010100)+6 种基金Special Associate Research Program of the Chinese Academy of Sciences(E1290601)National Natural Science Foundation of China(32122037,81891001,32192411,32100512,U1902215)Collaborative Research Fund of the Chinese Institute for Brain Research,Beijing(2020-NKX-PT-03)CAS Project for Young Scientists in Basic Research(YSBR-013)Young Elite Scientist Sponsorship Program by the China Association for Science and Technology(2020QNRC001)National Resource Center for Non-Human Primates。
文摘Infection with severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) causes diverse clinical manifestations and tissue injuries in multiple organs.However, cellular and molecular understanding of SARS-CoV-2 infection-associated pathology and immune defense features in different organs remains incomplete. Here, we profiled approximately 77 000single-nucleus transcriptomes of the lung, liver,kidney, and cerebral cortex in rhesus macaques(Macaca mulatta) infected with SARS-CoV-2 and healthy controls. Integrated analysis of the multiorgan dataset suggested that the liver harbored the strongest global transcriptional alterations. We observed prominent impairment in lung epithelial cells, especially in AT2 and ciliated cells, and evident signs of fibrosis in fibroblasts. These lung injury characteristics are similar to those reported in patients with coronavirus disease 2019(COVID-19).Furthermore, we found suppressed MHC class I/II molecular activity in the lung, inflammatory response in the liver, and activation of the kynurenine pathway,which induced the development of an immunosuppressive microenvironment. Analysis of the kidney dataset highlighted tropism of tubule cells to SARS-CoV-2, and we found membranous nephropathy(an autoimmune disease) caused by podocyte dysregulation. In addition, we identified the pathological states of astrocytes and oligodendrocytes in the cerebral cortex, providing molecular insights into COVID-19-related neurological implications. Overall, our multi-organ single-nucleus transcriptomic survey of SARS-CoV-2-infected rhesus macaques broadens our understanding of disease features and antiviral immune defects caused by SARS-CoV-2 infection,which may facilitate the development of therapeutic interventions for COVID-19.
基金supported by the Chinese Academy of Sciences(CAS zsys-02)CAS"Light of West China"Program(xbzg-zdsys-201909)。
文摘DEAR EDITOR,The Chinese tree shrew(Tupaia belangeri chinensis)is a small mammal closely related to primates.It has a small body size,low maintenance cost,and a relatively short reproductive cycle,all of which has made it the ideal model for the study of a variety of human diseases.In this study,we compared the anatomy of the skin of the Chinese tree shrew with that of the rhesus macaque,mouse and human,with the intention of providing the basic data required for the creation of skin disease models using this animal.Paraffin sections,hematoxylin-eosin(H&E)staining,masson staining and immunohistochemical techniques were used to examine the dorsal skin structure of the Chinese tree shrew.The epidermis was shown to be composed of 1–2 layers of cells.There were hair follicles,sebaceous glands and sweat glands in the dermis and the subcutaneous tissue,with apocrine glands being more common than eccrine glands.Both Keratin5(KRT5)and Keratin10(KRT10)were expressed in the skin of the Chinese tree shrew,with a localization in the cytoplasm.Overall,the skin morphology and histology of the Chinese tree shrew was basically the same as that of the human.We propose that the Chinese tree shrew has a strong potential to be used for creating animal models to help elucidate the molecular mechanisms underlying a variety of skin diseases.
基金supported by the National 863 Project of China (2012AA021801)grants from Chinese Academy of Sciences (KSCX2-EW-R-11 and KSCX2-EW-J-23)Yunnan Province (2009CI119)
文摘The Chinese tree shrew (Tupaia belangeri chinensis) is a small experimental animal with a close affinity to primates. This species has long been proposed to be an alternative experimental animal to primates in biomedical research. Despite decades of study, there is no pure breed for this animal, and the overall genetic diversity of wild tree shrews remains largely unknown. In order to obtain a set of genetic markers for evaluating the genetic diversity of tree shrew wild populations and tracing the lineages in inbreeding populations, we developed 12 polymorphic microsatellite markers from the genomic DNA of the tree shrew. An analysis of a wild population of 117 individuals collected from the suburb of Kunming, China, showed that these loci exhibited a highly expected heterozygosity (0.616). These 12 microsatellites were sufficient for individual identification and parentage analysis. The microsatellite markers developed in this study will be of use in evaluating genetic diversity and lineage tracing for the tree shrew.
基金supported by the Key-Area Research and Development Program of Guangdong Province(2019B030335001)National Key R&D Program of China(2018YFA0801403)Strategic Priority Research Program of the Chinese Academy of Sciences (XDB32060200 and XDB32020200)。
文摘We recently identified a cynomolgus monkey with naturally occurring Parkinson's disease(PD), indicating that PD may not be a uniquely human disease(Li et al., 2020). In our previous study, four lines of evidence, including typical PD clinical symptoms, pharmacological responses, pathological hallmarks, and genetic mutations, strongly supported the identification of a monkey with spontaneous PD(Figure 1).
基金This work was supported by the National 863 Project of China(2012AA021801)grants from Chinese Academy of Sciences(KSCX2-EW-R-11 and KSCX2-EW-J-23)and Yunnan Province(2009CI119)。
文摘The Chinese tree shrew(Tupaia belangeri chinensis)is a small experimental animal with a close affinity to primates.This species has long been proposed to be an alternative experimental animal to primates in biomedical research.Despite decades of study,there is no pure breed for this animal,and the overall genetic diversity of wild tree shrews remains largely unknown.In order to obtain a set of genetic markers for evaluating the genetic diversity of tree shrew wild populations and tracing the lineages in inbreeding populations,we developed 12 polymorphic microsatellite markers from the genomic DNA of the tree shrew.An analysis of a wild population of 117 individuals collected from the suburb of Kunming,China,showed that these loci exhibited a highly expected heterozygosity(0.616).These 12 microsatellites were sufficient for individual identification and parentage analysis.The microsatellite markers developed in this study will be of use in evaluating genetic diversity and lineage tracing for the tree shrew.
基金This work was supported by the National Key Research and Development Projects of the Ministry of Science and Technology of China,National Key Research and Development Program of China(2021YFC0863300)Ministry of Agriculture of China(2016ZX08009003-006)+1 种基金Key Program of Chinese Academy of Sciences(KJZD-SW-L11)Animal Branch of the Germplasm Bank of Wild Species,Chinese Academy of Sciences(the Large Research Infrastructure Funding)。
文摘Understanding the zoonotic origin and evolution history of SARS-CoV-2 will provide critical insights for alerting and preventing future outbreaks.A significant gap remains for the possible role of pangolins as a reservoir of SARS-CoV-2 related coronaviruses(SC2r-CoVs).Here,we screened SC2r-CoVs in 172 samples from 163 pangolin individuals of four species,and detected positive signals in muscles of four Manis javanica and,for the first time,one M.pentadactyla.Phylogeographic analysis of pangolin mitochondrial DNA traced their origins from Southeast Asia.Using in-solution hybridization capture sequencing,we assembled a partial pangolin SC2r-CoV(pangolin-CoV)genome sequence of 22895 bp(MP20)from the M.pentadactyla sample.Phylogenetic analyses revealed MP20 was very closely related to pangolin-CoVs that were identified in M.javanica seized by Guangxi Customs.A genetic contribution of bat coronavirus to pangolin-CoVs via recombination was indicated.Our analysis revealed that the genetic diversity of pangolin-CoVs is substantially higher than previously anticipated.Given the potential infectivity of pangolin-CoVs,the high genetic diversity of pangolin-CoVs alerts the ecological risk of zoonotic evolution and transmission of pathogenic SC2r-CoVs.
基金supported by the Yunnan Government(2009CI119)Modern Agricultural Industry Technology System(Honeybee)(CARS-45-kxj14)
文摘In honeybee (Apis mellifera) colonies, queens and workers are altemative forms of the adult female honeybee that develop from genetically identical zygotes but that depend on differential nourishment. Queens and workers display distinct morphologies, anatomies and behavior, better known as caste differentiation. Despite some basic insights, the exact mechanism responsible for this phenomenon, especially at the molecular level, remains unclear although some progress has been achieved. In this study, we examined mRNA levels of the TOR (target of rapamycin) and Dnmt3 (DNA methyltransferase 3) genes, closely related to caste differentiation in honeybees. We also investigated mRNA expression of the S6K (similar to RPS6-p70-protein kinase) gene linked closely to organismal growth and development in queen and worker larvae (1-day and 3-day old). Last, we investigated the methylation status of these three genes in corresponding castes. We found no difference in mRNA expression for the three genes between 1st instar queen and worker larvae; however, 3rd instar queen larvae had a higher level of TOR mRNA than worker larvae. Methylation levels of all three genes were lower in queen larvae than worker larvae but the differences were not statistically significant. These findings provide basic data for broadening our understanding of caste differentiation in female honeybees.