Halite and gypsum minerals in saline shale make the retention mechanism and chemical fractionation of residual oil unique. The Dongpu Depression in North China is a typically saline lacustrine basin with developing ha...Halite and gypsum minerals in saline shale make the retention mechanism and chemical fractionation of residual oil unique. The Dongpu Depression in North China is a typically saline lacustrine basin with developing halite and gypsum. The effect of gypsum minerals on residual oil content and chemical fractionation remains unclear. In this study, shale samples with different gypsum contents were used in organic geochemical experiments, showing that the high total organic matter (TOC) content and type II kerogen leads to a high residual oil content, as shown by high values of volatile hydrocarbon (S1) and extractable organic matter (EOM). XRD and FE-SEM result indicate that the existence of gypsum in saline shale contributes to an enhanced pore space and a higher residual oil content in comparison to non-gypsum shale. Additionally, the increase in the gypsum mineral content leads to an increase in the saturated hydrocarbon percentage and a decrease in polar components percentage (resins and asphaltene). Furthermore, thermal simulation experiments on low-mature saline shale show that the percentage of saturated hydrocarbons in the residual oil is high and remains stable and that the storage space is mainly mesoporous (> 20 nm) in the oil expulsion stage. However, the saturated hydrocarbons percentage decreases rapidly, and oil exists in mesopores (> 20 nm and < 5 nm) in the gas expulsion stage. In general, gypsum is conducive to the development of pore space, the adsorption of hydrocarbons and the occurrence of saturated hydrocarbon, leading to large quantities of residual oil. The data in this paper should prove to be reliable for shale oil exploration in saline lacustrine basins.展开更多
With the increasing exploration and development of typical hydrocarbon-rich depressions,such as the Dongpu Depression,the exploitation difficulty of shallow formations is increasing.There is an urgent need to clarify ...With the increasing exploration and development of typical hydrocarbon-rich depressions,such as the Dongpu Depression,the exploitation difficulty of shallow formations is increasing.There is an urgent need to clarify the hydrocarbon generation mode and hydrocarbon generation histories in deep formations.In this study,a gold tube-autoclave closed system was used to simulate the hydrocarbon generation processes and establish the hydrocarbon generation mode of different types of kerogen.Then,constrained by the thermal history and hydrocarbon generation kinetics,hydrocarbon generation histories were modeled.The results show that hydrocarbon generation evolution can be divided into five stages,and the maturity of each stage is different.The hydrocarbon generation history of the source rocks of the Shahejie 3 Formation mainly dates from the early depositional period of the Shahejie 1 Formation to the middle depositional period of the Dongying Formation.Hydrocarbon generation history constrained by thermal history and hydrocarbon generation kinetics is more in line with actual geological conditions.Moreover,this research can provide important hydrocarbon generation parameters for deep oil and gas exploration and exploitation of the Shahejie 3 Formation in the Dongpu Depression.展开更多
基金funded by the National Natural Science Foundation of China (NSFC) (41872128)the Science Foundation of China University of Petroleum, Beijing (No. 2462020YXZZ021).
文摘Halite and gypsum minerals in saline shale make the retention mechanism and chemical fractionation of residual oil unique. The Dongpu Depression in North China is a typically saline lacustrine basin with developing halite and gypsum. The effect of gypsum minerals on residual oil content and chemical fractionation remains unclear. In this study, shale samples with different gypsum contents were used in organic geochemical experiments, showing that the high total organic matter (TOC) content and type II kerogen leads to a high residual oil content, as shown by high values of volatile hydrocarbon (S1) and extractable organic matter (EOM). XRD and FE-SEM result indicate that the existence of gypsum in saline shale contributes to an enhanced pore space and a higher residual oil content in comparison to non-gypsum shale. Additionally, the increase in the gypsum mineral content leads to an increase in the saturated hydrocarbon percentage and a decrease in polar components percentage (resins and asphaltene). Furthermore, thermal simulation experiments on low-mature saline shale show that the percentage of saturated hydrocarbons in the residual oil is high and remains stable and that the storage space is mainly mesoporous (> 20 nm) in the oil expulsion stage. However, the saturated hydrocarbons percentage decreases rapidly, and oil exists in mesopores (> 20 nm and < 5 nm) in the gas expulsion stage. In general, gypsum is conducive to the development of pore space, the adsorption of hydrocarbons and the occurrence of saturated hydrocarbon, leading to large quantities of residual oil. The data in this paper should prove to be reliable for shale oil exploration in saline lacustrine basins.
基金funded by the National Major Science and Technology Projects of China(Grant No.2016ZX05006-004)the Sichuan Youth Science and Technology Foundation(Grant No.2016JQ0043)the National Natural Science Foundation of China(Grant No.41972144)
文摘With the increasing exploration and development of typical hydrocarbon-rich depressions,such as the Dongpu Depression,the exploitation difficulty of shallow formations is increasing.There is an urgent need to clarify the hydrocarbon generation mode and hydrocarbon generation histories in deep formations.In this study,a gold tube-autoclave closed system was used to simulate the hydrocarbon generation processes and establish the hydrocarbon generation mode of different types of kerogen.Then,constrained by the thermal history and hydrocarbon generation kinetics,hydrocarbon generation histories were modeled.The results show that hydrocarbon generation evolution can be divided into five stages,and the maturity of each stage is different.The hydrocarbon generation history of the source rocks of the Shahejie 3 Formation mainly dates from the early depositional period of the Shahejie 1 Formation to the middle depositional period of the Dongying Formation.Hydrocarbon generation history constrained by thermal history and hydrocarbon generation kinetics is more in line with actual geological conditions.Moreover,this research can provide important hydrocarbon generation parameters for deep oil and gas exploration and exploitation of the Shahejie 3 Formation in the Dongpu Depression.