期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Ultrasonic flaw detection of discontinuous defects in magnesium alloy materials 被引量:2
1
作者 Sheng-nan Xue Qi-chi Le +3 位作者 yong-hui jia Li-ping jiang Zhi-qiang Zhang Lei Bao 《China Foundry》 SCIE 2019年第4期256-261,共6页
Phased array ultrasonic testing, an effective ultrasonic testing(UT) technology, has been widely used in steel inspection because of its high accuracy, sensitivity, and efficiency. However, as its application in as-ca... Phased array ultrasonic testing, an effective ultrasonic testing(UT) technology, has been widely used in steel inspection because of its high accuracy, sensitivity, and efficiency. However, as its application in as-cast magnesium alloys has just begun, more research is needed. Considering the important role of the gain compensation in quantifying defects in magnesium alloys by ultrasonic phased array technology, the effects of microstructure, the position, size, and overlap of defects, and boundary distance(distance from the defect position to the side surface of the test casting) on gain compensation of as-cast AZ80 and AZ31 magnesium alloys were studied. Results show the gain compensation increases with the increase of grain size. There is a strict linear positive correlation between gain compensation and defect depth, but such relationship no longer exists due to the defects overlap, orientation and boundary distance. In addition, there is a strict linear negative correlation between the gain compensation and defect size. 展开更多
关键词 MAGNESIUM alloy ULTRASONIC phased array DEFECT detection GAIN COMPENSATION
下载PDF
Effect of harmonic magnetic field and pulse magnetic field on microstructure of high purity Cu during electromagnetic direct chill casting 被引量:1
2
作者 Lei Bao Da-zhi Zhao +3 位作者 Yin-ji Zhao yong-hui jia Xuan Wang Qi-chi Le 《China Foundry》 SCIE CAS 2021年第2期141-146,共6页
The effects of two types of magnetic fields,namely harmonic magnetic field(HMF)and pulse magnetic field(PMF)on magnetic flux density,Lorentz force,temperature field,and microstructure of high purity Cu were studied by... The effects of two types of magnetic fields,namely harmonic magnetic field(HMF)and pulse magnetic field(PMF)on magnetic flux density,Lorentz force,temperature field,and microstructure of high purity Cu were studied by numerical simulation and experiment during electromagnetic direct chill casting.The magnetic field is induced by a magnetic generation system including an electromagnetic control system and a cylindrical crystallizer of 300 mm in diameter equipped with excitation coils.A comprehensive mathematical model for high purity Cu electromagnetic casting was established in finite element method.The distributions of magnetic flux density and Lorentz force generated by the two magnetic fields were acquired by simulation and experimental measurement.The microstructure of billets produced by HMF and PMF casting was compared.Results show that the magnetic flux density and penetrability of PMF are significantly higher than those of HMF,due to its faster variation in transient current and higher peak value of magnetic flux density.In addition,PMF drives a stronger Lorentz force and deeper penetration depth than HMF does,because HMF creates higher eddy current and reverse electromagnetic field which weakens the original electromagnetic field.The microstructure of a billet by HMF is composed of columnar structure regions and central fine grain regions.By contrast,the billet by PMF has a uniform microstructure which is characterized by ultra-refined and uniform grains because PMF drives a strong dual convection,which increases the uniformity of the temperature field,enhances the impact of the liquid flow on the edge of the liquid pool and reduces the curvature radius of liquid pool.Eventually,PMF shows a good prospect for industrialization. 展开更多
关键词 high purity Cu pulse magnetic field harmonic magnetic field MICROSTRUCTURE sputtering target direct chill casting
下载PDF
Effect of electromagnetic parameters on melt flow and heat transfer of AZ80 Mg alloy during differential phase electromagnetic DC casting based on numerical simulation
3
作者 yong-hui jia Cheng-lu Hu +1 位作者 Qi-chi Le Wen-yi Hu 《China Foundry》 SCIE CAS 2022年第3期191-200,共10页
Based on multi-physical field coupling numerical simulation method,magnetic field distribution,melt flow,and heat transfer behavior of aΦ300 mm AZ80 alloy billet during differential phase electromagnetic DC casting(D... Based on multi-physical field coupling numerical simulation method,magnetic field distribution,melt flow,and heat transfer behavior of aΦ300 mm AZ80 alloy billet during differential phase electromagnetic DC casting(DP-EMC)with different electromagnetic parameters were studied.The results demonstrate that the increase in current intensity only changes the magnitude but does not change the Lorentz force's distribution characteristics.The maximum value of the Lorentz force increases linearly followed by an increase in current intensity.As the frequency increases,the Lorentz force's r component remains constant,and the z component decreases slightly.The change in current intensity correlates with the melt oscillation and convection intensity positively,as well as the liquid sump temperature uniformity.It does not mean that the higher the electric current,the better the metallurgical quality of the billet.A lower frequency is beneficial to generate a more significant melt flow and velocity fluctuation,which is helpful to create a more uniform temperature field.Appropriate DP-EMC parameters for aΦ300 mm AZ80 Mg alloy are 10-20 Hz frequency and 80-100 A current intensity. 展开更多
关键词 heat transfer melt flow differential phase electromagnetic field DC casting Mg alloy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部