期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Rotary bending fatigue behavior of A356 –T6 aluminum alloys by vacuum pressurizing casting 被引量:5
1
作者 Yong-qin Liu Wan-qi Jie +3 位作者 Zhi-ming Gao yong-jian zheng Hai-jun Luo Wen-tao Song 《China Foundry》 SCIE CAS 2015年第5期326-332,共7页
Vacuum pressurizing casting technique, providing better mould filling and inter-dendritic feeding, can reduce the porosity greatly in cast aluminum alloys, and improve the fatigue properties. The rotary bending fatigu... Vacuum pressurizing casting technique, providing better mould filling and inter-dendritic feeding, can reduce the porosity greatly in cast aluminum alloys, and improve the fatigue properties. The rotary bending fatigue properties of A356-T6 alloys prepared by vacuum pressurizing casting were investigated. The S-N curve and limit strength 90 MPa under fatigue life of 107 cycles were obtained. The analyses on the fatigue fractography and microstructure of specimens showed that the fatigue fracture mainly occurs at the positions with casting defects in the subsurface, especially at porosities regions, which attributed to the crack propagation during the fatigue fracture process. Using the empirical crack propagation law of Pairs-Erdogon, the quantitative relationship among the initial crack size, fatigue life and applied stress was established. The fatigue life decreases with an increase in initial crack size. Two constants in the Pairs-Erdogon equation of aluminum alloy A356-T6 were calculated using the experimental data. 展开更多
关键词 aluminum alloys vacuum pressurizing casting rotary bending fatigue POROSITY crack propagation
下载PDF
Role of fragmentation in as-cast structure:numerical study and experimental validation
2
作者 yong-jian zheng Meng-huai Wu +1 位作者 A.Kharicha A.Ludwig 《China Foundry》 SCIE 2017年第5期321-326,共6页
A volume average solidification model is extended to incorporate fragmentation as the source of equiaxed crystals during mixed columnar-equiaxed solidification. This study is to use this model to analyze the role of f... A volume average solidification model is extended to incorporate fragmentation as the source of equiaxed crystals during mixed columnar-equiaxed solidification. This study is to use this model to analyze the role of fragmentation in the formation of as-cast structure. Test simulations are made for the solidification of a model alloy(Sn-10wt.%Pb) with two different geometries. The first one is a 2D rectangular domain(50 × 60 mm^2) as cooled from the top boundary. Solidification starts unidirectionally as columnar structure from the top. The solute(Pb) enriched interdendritic melt is heavier than the bulk melt, and sinks downwards, hence leads to solutal convection. Fragmentation phenomenon occurs near the columnar tip front. The fragments are transported out of the columnar region, and they continue to grow and sink, and finally settle down and pile up at the bottom. The growing columnar structure from the top and pile-up of equiaxed crystals from the bottom finally lead to a mixed columnar-equiaxed structure, in turn leading to a columnar-to-equiaxed transition(CET). The second geometry is a 3D plate, 100 × 60 ×10 mm^3, as cooled laterally from one side. It was cast experimentally and analyzed for the as-cast structure. The equiaxed fragments are produced in the solidification front and transported into the bulk melt, leading to a special pattern of as-cast structure: columnar structure in the cool wall side and equiaxed structure in the upper left corner near the hot wall side, extending downwards to the middle bottom region. Numerically calculated as-cast structures agree with the experiment results. 展开更多
关键词 宏观结构 interdendritic 液体流动 破碎 TP391.99
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部