期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
多金属硫化矿的多尺度冲击破碎特性(英文) 被引量:6
1
作者 周文涛 韩跃新 +2 位作者 孙永升 杨金林 马少健 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第9期1929-1938,共10页
采用工艺矿物学测试仪(MLA)和落重试验研究锡石多金属硫化矿和铅锌多金属硫化矿石在冲击破碎过程中破碎能量、矿石硬度和矿石粒度对矿石破碎特性的影响规律。结果表明:除锡石外,两种矿石均含有用矿物磁黄铁矿、闪锌矿、脆硫锑铅矿、脉... 采用工艺矿物学测试仪(MLA)和落重试验研究锡石多金属硫化矿和铅锌多金属硫化矿石在冲击破碎过程中破碎能量、矿石硬度和矿石粒度对矿石破碎特性的影响规律。结果表明:除锡石外,两种矿石均含有用矿物磁黄铁矿、闪锌矿、脆硫锑铅矿、脉石矿物云母和石英。锡石与硫化矿物、石英等紧密连生形成集合体,相互混杂以交生或共生的浸染状细粒产出。锡石显著影响矿石破碎特性;矿石硬度与破碎参数A和b的乘积A×b值呈负相关,破碎细度受破碎能的影响,其大小与破碎参数A和b有关,其影响程度随A的增大而增大。当破碎能ECS低于1 kW·h/t时,其影响程度随b的增大而增大;当破碎能ECS高于1 kW·h/t时,其影响程度随b增大而减小。当破碎能较低时,相对于矿石粒度,破碎能对矿物破碎细度影响更大;当破碎能较高时,相对于破碎能,矿石粒度对矿物破碎细度影响更大。 展开更多
关键词 多金属硫化矿 破碎细度 破碎参数 破碎能 矿石粒度
下载PDF
Recovery of iron from high phosphorus oolitic iron ore using coal-based reduction followed by magnetic separation 被引量:43
2
作者 yong-sheng sun Yue-xin Han +2 位作者 Peng Gao Ze-hong Wang Duo-zhen Ren 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第5期411-419,共9页
Oolitic iron ore is one of the most important iron resources. This paper reports the recovery of iron from high phosphorus oolitic iron ore using coal-based reduction and magnetic separation. The influences of reducti... Oolitic iron ore is one of the most important iron resources. This paper reports the recovery of iron from high phosphorus oolitic iron ore using coal-based reduction and magnetic separation. The influences of reduction temperature, reduction time, C/O mole ratio, and CaO content on the metallization degree and iron recovery were investigated in detail. Experimental results show that reduced products with the metallization degree of 95.82% could be produced under the optimal conditions (i.e., reduction temperature, 1250℃; reduction time, 50 min; C/O mole ratio, 2.0; and CaO content, 10wt%). The magnetic concentrate containing 89.63wt% Fe with the iron recovery of 96.21% was obtained. According to the mineralogical and morphologic analysis, the iron minerals had been reduced and iron was mainly enriched into the metallic iron phase embedded in the slag matrix in the form of spherical particles. Apatite was also reduced to phosphorus, which partially migrated into the metallic iron phase. 展开更多
关键词 oolitic iron ore iron ore reduction magnetic separation PHOSPHORUS
下载PDF
Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment 被引量:13
3
作者 Wen-tao Zhou Yue-xin Han +1 位作者 yong-sheng sun Yan-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第4期443-453,共11页
The efficient development and utilization of high-phosphorus oolitic hematite is of great strategic significance for the sustainable supply of iron-ore resources in China.In this paper,the mechanism of high-temperatur... The efficient development and utilization of high-phosphorus oolitic hematite is of great strategic significance for the sustainable supply of iron-ore resources in China.In this paper,the mechanism of high-temperature pretreatment for enhancing the effect of iron enrichment and dephosphorization in the magnetization roasting–leaching process was studied by X-ray diffraction(XRD),vibration sample magnetometer(VSM),scanning electron microscopy and energy dispersive spectrometry(SEM–EDS).Compared with the process without high-temperature pretreatment,the iron grade of the magnetic separation concentrate after high-temperature pretreatment had increased by 0.98%,iron recovery rate had increased by 1.33%,and the phosphorus content in the leached residue had decreased by 0.12%.High-temperature pretreatment resulted in the dehydration and decomposition of hydroxyapatite,the dehydration of limonite and the thermal decomposition of siderite,which can produce pores and cracks and weaken the compactness of the ore,improve the magnetization characteristics of roasted ore,and strengthen the iron enrichment and dephosphorization during the magnetization roasting and leaching process. 展开更多
关键词 high-phosphorus oolitic HEMATITE high-temperature PRETREATMENT iron enrichment and DEPHOSPHORIZATION MAGNETIZATION roasting–leaching process phase transformation
下载PDF
Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore 被引量:10
4
作者 yong-sheng sun Yue-xin Han +1 位作者 Yan-feng Li Yan-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第2期123-129,共7页
To reveal the formation and characteristics of metallic iron grains in coal-based reduction, oolitic iron ore was isothermally re- duced in various reduction times at various reduction temperatures. The microstructure... To reveal the formation and characteristics of metallic iron grains in coal-based reduction, oolitic iron ore was isothermally re- duced in various reduction times at various reduction temperatures. The microstructure and size of the metallic iron phase were investigated by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and a Bgrimm process mineralogy analyzer. In the results, the re- duced Fe separates from the ore and forms metallic iron protuberances, and then the subsequent reduced Fe diffuses to the protuberances and grows into metallic iron grains. Most of the metallic iron grains exist in the quasi-spherical shape and inlaid in the slag matrix. The cumula- tive frequency of metallic iron grain size is markedly influenced by both reduction time and temperature. With increasing reduction temperature and time, the grain size of metallic iron obviously increases. According to the classical grain growth equation, the growth kinetic parameters, i.e., time exponent, growth activation energy, and pre-exponential constant, are estimated to be 1.3759 ± 0.0374, 103.18 kJ·mol^-1, and 922.05, respec- tively. Using these calculated parameters, a growth model is established to describe the growth behavior of metallic iron grains. 展开更多
关键词 iron ore reduction metallic iron grain size growth kinetics activation energy
下载PDF
Distribution behavior of phosphorus in the coal-based reduction of high-phosphorus-content oolitic iron ore 被引量:8
5
作者 yong-sheng sun Yue-xin Han +1 位作者 Peng Gao Duo-zhen Ren 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第4期331-338,共8页
This study focuses on the reduction of phosphorus from high-phosphorus-content oolitic iron ore via coal-based reduction. The distribution behavior of phosphorus (i.e., the phosphorus content and the phosphorus distr... This study focuses on the reduction of phosphorus from high-phosphorus-content oolitic iron ore via coal-based reduction. The distribution behavior of phosphorus (i.e., the phosphorus content and the phosphorus distribution ratio in the metal, slag, and gas phases) during reduction was investigated in detail. Experimental results showed that the distribution behavior of phosphorus was strongly influenced by the reduction temperature, the reduction time, and the C/O molar ratio. A higher temperature and a longer reaction time were more favor-able for phosphorus reduction and enrichment in the metal phase. An increase in the C/O ratio improved phosphorus reduction but also hin-dered the mass transfer of the reduced phosphorus when the C/O ratio exceeded 2.0. According to scanning electron microscopy analysis, the iron ore was transformed from an integral structure to metal and slag fractions during the reduction process. Apatite in the ore was reduced to P, and the reduced P was mainly enriched in the metal phase. These results suggest that the proposed method may enable utilization of high-phosphorus-content oolitic iron ore resources. 展开更多
关键词 iron ores PHOSPHORUS ore reduction PYROMETALLURGY
下载PDF
Migration behaviors and kinetics of phosphorus during coal-based reduction of high-phosphorus oolitic iron ore 被引量:5
6
作者 yong-sheng sun Yan-feng Li +1 位作者 Yue-xin Han Yan-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第8期938-945,共8页
To understand the migration mechanisms of phosphorus(P)during coal-based reduction,a high-phosphorus oolitic iron ore was reduced by coal under various experimental conditions.The migration characteristics and kinetic... To understand the migration mechanisms of phosphorus(P)during coal-based reduction,a high-phosphorus oolitic iron ore was reduced by coal under various experimental conditions.The migration characteristics and kinetics of P were investigated by a field-emission electron probe microanalyzer(FE-EPMA)and using the basic principle of solid phase mass transfer,respectively.Experimental results showed that the P transferred from the slag to the metallic phase during reduction,and the migration process could be divided into three stages:phosphorus diffusing from the slag to the metallic interface,the formation of Fe P compounds at the slag metal interface and P diffusing from the slag metal interface to the metallic interior.The reduction time and temperature significantly influenced the phosphorus content of the metallic and slag phases.The P content of the metallic phase increased with increasing reduction time and temperature,while that of the slag phase gradually decreased.The P diffusion constant and activation energy were determined and a migration kinetics model of P in coal-based reduction was proposed.P diffusion in the metallic phase was the controlling step of the P migration. 展开更多
关键词 high-phosphorus oolitic iron ORE COAL-BASED REDUCTION PHOSPHORUS migration KINETICS
下载PDF
Reduction behavior of hematite in the presence of coke 被引量:1
7
作者 Ze-hong Wang Guo-feng Li +1 位作者 yong-sheng sun Ming-zhao He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第11期1244-1251,共8页
The reduction kinetics of hematite in the presence of coke as a reductant was studied via isothermal and non-isothermal thermodynamic analyses. The isothermal reduction of hematite was conducted at a pre-determined te... The reduction kinetics of hematite in the presence of coke as a reductant was studied via isothermal and non-isothermal thermodynamic analyses. The isothermal reduction of hematite was conducted at a pre-determined temperature ranging from 1423 to 1573 K. The results indicated that a higher reduction temperature led to an increased reduction degree and an increased reduction rate. The non-isothermal reduction of hematite was carried out from room temperature to 1573 K at various heating rates from 5 to 15 K·min^(-1). A greater heating rate gave a greater reduction rate but decreased reduction degree. With an increase in temperature, both the reduction rate and the reduction degree increased at a smaller rate when the temperature was less than 1150 K, and they increased at a higher rate when the temperature was greater than 1150 K before completion of the reduction reaction. Both the isothermal and the non-isothermal reduction behaviors of hematite were described by the Avrami–Erofeev model. For the isothermal reduction, the apparent activation energy and pre-exponential factor were 171.25 kJ ·mol^(-1) and 1.80 × 10~5 min^(-1), respectively. In the case of non-isothermal reduction, however, the apparent activation energy and pre-exponential factor were correlated with the heating rate. 展开更多
关键词 hematite ore reduction reduction kinetics coke
下载PDF
Reaction behavior of associated rare earth minerals during coal-based reduction 被引量:3
8
作者 Peng Gao Zhi-Hang Li +1 位作者 Yue-Xin Han yong-sheng sun 《Rare Metals》 SCIE EI CAS CSCD 2014年第5期628-632,共5页
In order to ascertain the reaction behavior of rare earth minerals in coal-based reduction, X-ray diffraction(XRD), scanning electron microscopy(SEM), and energy dispersive spectroscopy(EDS) analyses were applie... In order to ascertain the reaction behavior of rare earth minerals in coal-based reduction, X-ray diffraction(XRD), scanning electron microscopy(SEM), and energy dispersive spectroscopy(EDS) analyses were applied to investigate the rare earth minerals in Bayan Obo.The occurrence state and regularity of rare earth elements were analyzed under different reduction time. The results reveal that rare earth elements in rare earth minerals exist in RE(CO3)F(bastnaesite) and REPO4(monazite). In this research, at 1,498 K with a C/O molar ratio(i.e., molar ratio of fixed carbon in the coal to reducible oxygen in the ore) of2.5, rare earth minerals primarily decompose into RE2O3at5 min. When the time is extended to 10 min, solid-phase reactions occur among RE2O3, CaO, and SiO2, and the resultant is cerium wollastonite(CaO·2RE2O3·3SiO2). At reaction time 〉20 min, rare earth elements mainly exist in cerium wollastonite(CaO·2RE2O3·3SiO2), and the grain size varies in the range of 10–30 μm. The results show that coal-based reduction is efficient to recover rare earth minerals in reduced materials. 展开更多
关键词 Coal-based reduction Rare earth minerals Reaction behavior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部