期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Reaction degree of composition B explosive with multi-layered compound structure protection subjected to detonation loading 被引量:4
1
作者 Jia-yun Liu yong-xiang dong +3 位作者 Xuan-yi An Ping Ye Qi-tian Sun Qian Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期315-326,共12页
The explosive reaction degree and protection from explosions are concerns in the military field.In this work,the reaction degree of the composition B explosive was investigated experimentally.Multi-layered compound st... The explosive reaction degree and protection from explosions are concerns in the military field.In this work,the reaction degree of the composition B explosive was investigated experimentally.Multi-layered compound structures were used as barriers to weaken the blast loads.A comprehensive experiment using a high-speed camera and image processing techniques,side witness plates,and bottom witness plates was presented.Using the experimental fragment velocities,fragment piercing patterns,and damage characteristics,the reaction degree of the explosive impeded by different multi-layered compound structures could be precisely differentiated.Reaction parameters of the explosive obstructed by compound structures were obtained by theoretical analysis and numerical simulations.Unlike the common method in which the explosive reaction degree is only distinguished based on the initial pressure amplitude transmitted into the explosive,a following shock wave reflected from the side steel casing was also considered.Different detonation growth paths in the explosive formed.Therefore,all these shock wave propagation characteristics must be considered to analyze the explosive response impeded by compound structures. 展开更多
关键词 Reaction degree Explosive protection Compound structure Comprehensive experiment
下载PDF
Firm embedding behavior of annular grooved projectiles impacting ductile metal targets 被引量:1
2
作者 Qi Huang Shun-shan Feng +3 位作者 Xu-ke Lan Chao-nan Chen yong-xiang dong Tong Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第5期768-778,共11页
Annular grooved projectiles(AGPs)have drawn ongoing concerns as an advanced penetrator for their excellent anti-rebound capability in impacting metal plates.They could become embedded solidly in the target surface dur... Annular grooved projectiles(AGPs)have drawn ongoing concerns as an advanced penetrator for their excellent anti-rebound capability in impacting metal plates.They could become embedded solidly in the target surface during low-velocity impact.In this investigation,the firm embedding behavior of AGP was observed by impact experiments.Corresponding numerical simulations provided a better understanding of this process.Experimental and numerical results indicated that the firm embedding behavior of AGP was mainly due to the filling-material in the groove rather than the friction between the projectile and target,unlike traditional shape such as conical projectile.According to observation,firm embedding process can generally be subdivided into four stages:initial-cratering stage,groove-filling stage,fillingmaterial failure stage and rebound vibration stage.Moreover,the damage mechanics of target material around crater was obtained through microscopic tests.A comparison of the cross-sectional figures between the experiment and simulation proved that the analysis and the proposed method were reasonable and feasible,which further demonstrated that the firm embedding behavior has application potential in new concept warheads. 展开更多
关键词 ANNULAR grooved projectile (AGP) Impact FIRM EMBEDDING BEHAVIOR Flow characteristics Microscopic tests
下载PDF
Partial penetration of annular grooved projectiles impacting ductile metal targets
3
作者 Qi Huang Shun-shan Feng +3 位作者 Xu-ke Lan Qing Song Tong Zhou yong-xiang dong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1115-1125,共11页
Changing and optimizing the projectile nose shape is an important way to achieve specific ballistic performance.One special ballistic performance is the embedding effect,which can achieve a delayed high-explosive reac... Changing and optimizing the projectile nose shape is an important way to achieve specific ballistic performance.One special ballistic performance is the embedding effect,which can achieve a delayed high-explosive reaction on the target surface.This embedding effect includes a rebound phase that is significantly different from the traditional penetration process.To better study embedment behavior,this study proposed a novel nose shape called an annular grooved projectile and defined its interaction process with the ductile metal plate as partial penetration.Specifically,we conducted a series of lowvelocity-ballistic tests in which these steel projectiles were used to strike 16-mm-thick target plates made with 2024-O aluminum alloy.We observed the dynamic evolution characteristics of this aluminum alloy near the impact craters and analyzed these characteristics by corresponding cross-sectional views and numerical simulations.The results indicated that the penetration resistance had a brief decrease that was influenced by its groove structure,but then it increased significantlydthat is,the fluctuation of penetration resistance was affected by the irregular nose shape.Moreover,we visualized the distribution of the material in the groove and its inflow process through the rheology lines in microscopic tests and the highlighted mesh lines in simulations.The combination of these phenomena revealed the embedment mechanism of the annular grooved projectile and optimized the design of the groove shape to achieve a more firm embedment performance.The embedment was achieved primarily by the target material filled in the groove structure.Therefore,preventing the shear failure that occurred on the filling material was key to achieving this embedding effect. 展开更多
关键词 Partial penetration Embedment behavior Ballistic impact Annular grooved projectile(AGP) Microscopic experiments
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部