A novel polybenzimidazole(PBI)-based trilayer membrane assembly is developed for application in vanadium redox flow battery(VRFB).The membrane comprises a 1μm thin cross-linked poly[2,2′-(p-oxydiphenylene)−5,5′-bib...A novel polybenzimidazole(PBI)-based trilayer membrane assembly is developed for application in vanadium redox flow battery(VRFB).The membrane comprises a 1μm thin cross-linked poly[2,2′-(p-oxydiphenylene)−5,5′-bibenzimidazole](OPBI)sandwiched between two 20μm thick porous OPBI membranes(p-OPBI)without further lamination steps.The trilayer membrane demonstrates exceptional properties,such as high conductivity and low area-specific resistance(ASR)of 51 mS cm−1 and 81mΩcm^(2),respectively.Contact with vanadium electrolyte increases the ASR of trilayer membrane only to 158mΩcm^(2),while that of Nafion is 193mΩcm^(2).VO^(2+)permeability is 2.73×10^(-9) cm^(2) min^(−1),about 150 times lower than that of Nafion NR212.In addition,the membrane has high mechanical strength and high chemical stability against VO^(2+).In VRFB,the combination of low resistance and low vanadium permeability results in excellent performance,revealing high Coulombic efficiency(>99%),high energy efficiency(EE;90.8%at current density of 80mA cm^(−2)),and long-term durability.The EE is one of the best reported to date.展开更多
In this study,an amine-coordinated cobalt phthalocyanine(CoPc)-based anodic catalyst was fabricated by a facile process,to enhance the performance of hydrogen peroxide fuel cells(HPFCs) and enzymatic biofuel cells(EBC...In this study,an amine-coordinated cobalt phthalocyanine(CoPc)-based anodic catalyst was fabricated by a facile process,to enhance the performance of hydrogen peroxide fuel cells(HPFCs) and enzymatic biofuel cells(EBCs).For this purpose,polyethyleneimine(PEI) was added onto the reduced graphene oxide and CoPc composite(RGO/CoPc) to create abundant NH2 axial ligand groups,for anchoring the Co core within the CoPc.Owing to the PEI addition,the onset potential of the hydrogen peroxide oxidation reaction was shifted by 0.13 V in the negative direction(0.02 V) and the current density was improved by 1.92 times(1.297 mA cm^(-2)),compared to those for RGO/CoPc(0.15 V and 0.676 mA cm^(-2),respectively),due to the formation of donor-acceptor dyads and the prevention of CoPc from leaching out.The biocatalyst using glucose oxidase(GOx)([RGO/CoPc]/PEI/GOx) showed a better onset potential and catalytic activity(0.15 V and 318.7 μA cm^(-2)) than comparable structures,as well as significantly improved operational durability and long-term stability.This is also attributed to PEI,which created a favorable microenvironment for the enzyme.The maximum power densities(MPDs) and open-circuit voltages(OCVs) obtained for HPFCs and EBCs using the suggested catalyst were 105.2±1.3 μW cm^(-2)(0.317±0.003 V) and 25.4±0.9 μW cm^(-2)(0.283±0.007 V),respectively.This shows that the amine axial ligand effectively improves the performance of the actual driving HPFCs and EBCs.展开更多
A glucose oxidation catalyst comprising carbon nanotube,tetrathiafulvalene(TTF),gelatin,glutaraldehyde(GA)and glucose oxidase(GOx)(CNT/[TTF-GOx]/Gelatin+GA)is suggested to enhance the reactivity of glucose oxidation r...A glucose oxidation catalyst comprising carbon nanotube,tetrathiafulvalene(TTF),gelatin,glutaraldehyde(GA)and glucose oxidase(GOx)(CNT/[TTF-GOx]/Gelatin+GA)is suggested to enhance the reactivity of glucose oxidation reaction(GOR),and the performance and stability of enzymatic biofuel cells(EBCs)using this catalyst.In this catalyst,TTF is used as mediator to transfer electron effectively,while GA is crosslinked to gelatin to form non-soluble network.The structure prevents the dissolution of gelatin from aqueous electrolyte and reduces the leaching-out of GOx and TTF molecules.To confirm the crosslinking effect of GA and gelatin,Fourier-transform infrared spectroscopy(FT-IR)and electrochemical evaluations are utilized.According to FT-IR analysis,it was observed that the amide I peak shifted after crosslinking.This is evidence showing the appropriate network formation and the reactivity of CNT/[TTFGOx]/Gelatin+GA is well preserved even after multiple potential cycling.In addition,its GOx activity is regularly monitored for one month and the measurements prove that the structure prevents the leaching out of GOx molecules.Based on that,EBC using the anodic catalyst shows excellent performances,such as open circuit voltage of 0.75 V and maximum power density of 184μW/cm^(2).展开更多
基金supported by KIST (2E31871 and 2E32591)and Innovation Fund Denmark Denmark (DANFLOW—project#9090-00059)Korea Institute for Advancement of Technology (KIAT)through the International Cooperative R&D program (Project No.P0018437)Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (2021R1A6A1A03039981).
文摘A novel polybenzimidazole(PBI)-based trilayer membrane assembly is developed for application in vanadium redox flow battery(VRFB).The membrane comprises a 1μm thin cross-linked poly[2,2′-(p-oxydiphenylene)−5,5′-bibenzimidazole](OPBI)sandwiched between two 20μm thick porous OPBI membranes(p-OPBI)without further lamination steps.The trilayer membrane demonstrates exceptional properties,such as high conductivity and low area-specific resistance(ASR)of 51 mS cm−1 and 81mΩcm^(2),respectively.Contact with vanadium electrolyte increases the ASR of trilayer membrane only to 158mΩcm^(2),while that of Nafion is 193mΩcm^(2).VO^(2+)permeability is 2.73×10^(-9) cm^(2) min^(−1),about 150 times lower than that of Nafion NR212.In addition,the membrane has high mechanical strength and high chemical stability against VO^(2+).In VRFB,the combination of low resistance and low vanadium permeability results in excellent performance,revealing high Coulombic efficiency(>99%),high energy efficiency(EE;90.8%at current density of 80mA cm^(−2)),and long-term durability.The EE is one of the best reported to date.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Nos.2017R1D1A1B03032033 and 2020R1C1C1010386)“Leaders in INdustry-university Cooperation+”project supported by the Ministry of Education and National Research Foundation of Korea。
文摘In this study,an amine-coordinated cobalt phthalocyanine(CoPc)-based anodic catalyst was fabricated by a facile process,to enhance the performance of hydrogen peroxide fuel cells(HPFCs) and enzymatic biofuel cells(EBCs).For this purpose,polyethyleneimine(PEI) was added onto the reduced graphene oxide and CoPc composite(RGO/CoPc) to create abundant NH2 axial ligand groups,for anchoring the Co core within the CoPc.Owing to the PEI addition,the onset potential of the hydrogen peroxide oxidation reaction was shifted by 0.13 V in the negative direction(0.02 V) and the current density was improved by 1.92 times(1.297 mA cm^(-2)),compared to those for RGO/CoPc(0.15 V and 0.676 mA cm^(-2),respectively),due to the formation of donor-acceptor dyads and the prevention of CoPc from leaching out.The biocatalyst using glucose oxidase(GOx)([RGO/CoPc]/PEI/GOx) showed a better onset potential and catalytic activity(0.15 V and 318.7 μA cm^(-2)) than comparable structures,as well as significantly improved operational durability and long-term stability.This is also attributed to PEI,which created a favorable microenvironment for the enzyme.The maximum power densities(MPDs) and open-circuit voltages(OCVs) obtained for HPFCs and EBCs using the suggested catalyst were 105.2±1.3 μW cm^(-2)(0.317±0.003 V) and 25.4±0.9 μW cm^(-2)(0.283±0.007 V),respectively.This shows that the amine axial ligand effectively improves the performance of the actual driving HPFCs and EBCs.
基金supported by the Advanced Research Project funded by the SeoulTech(Seoul National University of Science and Technology)。
文摘A glucose oxidation catalyst comprising carbon nanotube,tetrathiafulvalene(TTF),gelatin,glutaraldehyde(GA)and glucose oxidase(GOx)(CNT/[TTF-GOx]/Gelatin+GA)is suggested to enhance the reactivity of glucose oxidation reaction(GOR),and the performance and stability of enzymatic biofuel cells(EBCs)using this catalyst.In this catalyst,TTF is used as mediator to transfer electron effectively,while GA is crosslinked to gelatin to form non-soluble network.The structure prevents the dissolution of gelatin from aqueous electrolyte and reduces the leaching-out of GOx and TTF molecules.To confirm the crosslinking effect of GA and gelatin,Fourier-transform infrared spectroscopy(FT-IR)and electrochemical evaluations are utilized.According to FT-IR analysis,it was observed that the amide I peak shifted after crosslinking.This is evidence showing the appropriate network formation and the reactivity of CNT/[TTFGOx]/Gelatin+GA is well preserved even after multiple potential cycling.In addition,its GOx activity is regularly monitored for one month and the measurements prove that the structure prevents the leaching out of GOx molecules.Based on that,EBC using the anodic catalyst shows excellent performances,such as open circuit voltage of 0.75 V and maximum power density of 184μW/cm^(2).