In this paper,we use DEA-Tobit model to conduct empirical study on the governmental supply efficiency of public service in Chongqing's 38 counties and the influencing factors during the period 2008-2011.The result...In this paper,we use DEA-Tobit model to conduct empirical study on the governmental supply efficiency of public service in Chongqing's 38 counties and the influencing factors during the period 2008-2011.The results show that the supply efficiency of basic public service at county level is generally low,and there is significant regional differences and strong volatility;per capita GDP,population density and population size,and level of education of the residents,are significantly correlated with the supply efficiency of basic public service at county level,but traffic density,urbanization level,and the proportion of government spending on public service to total fiscal expenditure,have no significant effects on the efficiency of basic public service at county level.Based on this,we propose some policy recommendations for enhancing the level of local economic development and the level of education,and reasonably guiding the residents'agglomeration.展开更多
Developing a catalyst to break the tradeoff relation-ship between the catalytic activity and antipoisoning property toward the ethanol oxidation reaction(EOR)is of critical importance to the development of direct etha...Developing a catalyst to break the tradeoff relation-ship between the catalytic activity and antipoisoning property toward the ethanol oxidation reaction(EOR)is of critical importance to the development of direct ethanol fuel cells(DEFCs),but remains challenging.Here,we developed a unique class of single-site Cu-doped PdSn wavy nanowires(denoted as SS Cu−PdSn WNWs)with promoted activity and durability toward alkaline EOR.Detailed characterizations reveal the atomic isolation of Cu species dispersed on the surface of the PdSn WNWs with distinct wavy structure and grain boundaries.The created SS Cu−PdSn WNWs exhibit an enhanced EOR performance in terms of mass activity,which is higher than those of PdSn WNWs,commercial Pd black,and commercial Pd/C,respectively.Moreover,the SS Cu−PdSn WNWs can also show improved stability as compared to other catalysts due to the improved antipoisoning property from the unique surface anchoring structure.Further investigations demonstrate that the doped SS Cu can strongly inhibit the adsorption of CO and promote the reaction process of EOR.DFT results reveal that the doped Cu shifts down the d-band center of PdSn,thereby modifying the adsorption of intermediates and reducing the reaction barrier of EOR.This work maps a pathway for optimally boosting EOR performance with surface engineering via atomic doping.展开更多
Although high-efficiency production of hydrogen peroxide(H_(2)O_(2))can be realized separately by means of direct,electrochemical,and photocatalytic synthesis,developing versatile catalysts is particularly challenging...Although high-efficiency production of hydrogen peroxide(H_(2)O_(2))can be realized separately by means of direct,electrochemical,and photocatalytic synthesis,developing versatile catalysts is particularly challenging yet desirable.Herein,for the first time we reported that palladium-sulphur nanocrystals(Pd-S NCs)can be adopted as robust and universal catalysts,which can realize the efficient O_(2) conversion by three methods.As a result,Pd-S NCs exhibit an excellent selectivity(89.5%)to H_(2)O_(2)with high productivity(133.6 mol·kgcat^(−1)·h^(−1))in the direct synthesis,along with the significantly enhanced H_(2)O_(2)production activity and stability via electrocatalytic and photocatalytic syntheses.It is demonstrated that the isolated Pd sites can enhance the adsorption of O_(2) and inhibit its O–O bond dissociation,improving H_(2)O_(2)selectivity and reducing H_(2)O_(2)degradation.Further study confirms that the difference in surface atom composition and arrangement is the key factor for different ORR mechanisms on Pd NCs and Pd-S NCs.展开更多
The synthesis of Pt-based nanoparticles(NPs)with ultrasmall feature and tailored structure is of great importance for catalysis yet challenging.In this work,we demonstrate a facile top–down strategy for the fabricati...The synthesis of Pt-based nanoparticles(NPs)with ultrasmall feature and tailored structure is of great importance for catalysis yet challenging.In this work,we demonstrate a facile top–down strategy for the fabrication of small-sized Pt-based intermetallic compounds(IMCs)with L10 structure through the evaporation of Cd under high temperature.Impressively,such thermal treatment can be used as a versatile strategy for creating binary,ternary,quaternary,quinary,and senary L10-Pt-based IMCs.Moreover,the small-sized Pt-based IMCs display high stability against high temperature of 700℃,which can serve as active and selective catalyst for the selective hydrogenation of 4-nitrophenylacetylene.This work may not only provide a versatile top–down strategy for fabricating highly stable small-sized Pt-based NPs with L10 structure,but also promote their extensive applications in catalysis and beyond.展开更多
基金Supported by National Social Science Fund Project(11BGL055)Humanities and Social Science Planning Project,Ministry of Education(10 YJAZH016)Chongqing Municipal Social Science Planning Project(2009 JJ 06)
文摘In this paper,we use DEA-Tobit model to conduct empirical study on the governmental supply efficiency of public service in Chongqing's 38 counties and the influencing factors during the period 2008-2011.The results show that the supply efficiency of basic public service at county level is generally low,and there is significant regional differences and strong volatility;per capita GDP,population density and population size,and level of education of the residents,are significantly correlated with the supply efficiency of basic public service at county level,but traffic density,urbanization level,and the proportion of government spending on public service to total fiscal expenditure,have no significant effects on the efficiency of basic public service at county level.Based on this,we propose some policy recommendations for enhancing the level of local economic development and the level of education,and reasonably guiding the residents'agglomeration.
基金the National Natural Science Foundation of China(21905188)the major project of Basic Science(natural science)of Jiangsu Province(21KJA430001)+2 种基金the Jiangsu Provincial Natural Science Foundation(BK20211316)the Suzhou Municipal Science and Technology Bureau(SYG202125)the State Key Laboratory of Physical Chemistry of Solid Surfaces,Xiamen University(202113)。
文摘Developing a catalyst to break the tradeoff relation-ship between the catalytic activity and antipoisoning property toward the ethanol oxidation reaction(EOR)is of critical importance to the development of direct ethanol fuel cells(DEFCs),but remains challenging.Here,we developed a unique class of single-site Cu-doped PdSn wavy nanowires(denoted as SS Cu−PdSn WNWs)with promoted activity and durability toward alkaline EOR.Detailed characterizations reveal the atomic isolation of Cu species dispersed on the surface of the PdSn WNWs with distinct wavy structure and grain boundaries.The created SS Cu−PdSn WNWs exhibit an enhanced EOR performance in terms of mass activity,which is higher than those of PdSn WNWs,commercial Pd black,and commercial Pd/C,respectively.Moreover,the SS Cu−PdSn WNWs can also show improved stability as compared to other catalysts due to the improved antipoisoning property from the unique surface anchoring structure.Further investigations demonstrate that the doped SS Cu can strongly inhibit the adsorption of CO and promote the reaction process of EOR.DFT results reveal that the doped Cu shifts down the d-band center of PdSn,thereby modifying the adsorption of intermediates and reducing the reaction barrier of EOR.This work maps a pathway for optimally boosting EOR performance with surface engineering via atomic doping.
基金the National Key R&D Program of China(Nos.2017YFA0208200 and 2016YFA0204100)the National Natural Science Foundation of China(No.22025108)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the start-up supports from Xiamen University.
文摘Although high-efficiency production of hydrogen peroxide(H_(2)O_(2))can be realized separately by means of direct,electrochemical,and photocatalytic synthesis,developing versatile catalysts is particularly challenging yet desirable.Herein,for the first time we reported that palladium-sulphur nanocrystals(Pd-S NCs)can be adopted as robust and universal catalysts,which can realize the efficient O_(2) conversion by three methods.As a result,Pd-S NCs exhibit an excellent selectivity(89.5%)to H_(2)O_(2)with high productivity(133.6 mol·kgcat^(−1)·h^(−1))in the direct synthesis,along with the significantly enhanced H_(2)O_(2)production activity and stability via electrocatalytic and photocatalytic syntheses.It is demonstrated that the isolated Pd sites can enhance the adsorption of O_(2) and inhibit its O–O bond dissociation,improving H_(2)O_(2)selectivity and reducing H_(2)O_(2)degradation.Further study confirms that the difference in surface atom composition and arrangement is the key factor for different ORR mechanisms on Pd NCs and Pd-S NCs.
基金supports by the National Key Research and Development(R&D)Program of China(No.2020YFB1505802)the Ministry of Science and Technology of China(No.2017YFA0208200)+2 种基金the National Natural Science Foundation of China(Nos.22025108,U21A20327,22121001,and 51802206)Guangdong Provincial Natural Science Fund for Distinguished Young Scholars(No.2021B1515020081)startup supports from Xiamen University and Guangzhou Key Laboratory of Low Dimensional Materials and Energy Storage Devices(No.20195010002).
文摘The synthesis of Pt-based nanoparticles(NPs)with ultrasmall feature and tailored structure is of great importance for catalysis yet challenging.In this work,we demonstrate a facile top–down strategy for the fabrication of small-sized Pt-based intermetallic compounds(IMCs)with L10 structure through the evaporation of Cd under high temperature.Impressively,such thermal treatment can be used as a versatile strategy for creating binary,ternary,quaternary,quinary,and senary L10-Pt-based IMCs.Moreover,the small-sized Pt-based IMCs display high stability against high temperature of 700℃,which can serve as active and selective catalyst for the selective hydrogenation of 4-nitrophenylacetylene.This work may not only provide a versatile top–down strategy for fabricating highly stable small-sized Pt-based NPs with L10 structure,but also promote their extensive applications in catalysis and beyond.
基金This work was financially supported by the start-up funding from Soochow University,Peking University,and Thousand Youth Talent Program,the National Natural Science Foundation of China (No.21571135),and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).