Nonlinear optical frequency mixing,which describes new frequencies generation by exciting nonlinear materials with intense light field,has drawn vast interests in the field of photonic devices,material characterizatio...Nonlinear optical frequency mixing,which describes new frequencies generation by exciting nonlinear materials with intense light field,has drawn vast interests in the field of photonic devices,material characterization,and optical imaging.Investigating and manipulating the nonlinear optical response of target materials lead us to reveal hidden physics and develop applications in optical devices.Here,we report the realization of facile manipulation of nonlinear optical responses in the example system of MoS_(2) monolayer by van der Waals interfacial engineering.We found that,the interfacing of monolayer graphene will weaken the exciton oscillator strength in MoS_(2) monolayer and correspondingly suppress the second harmonic generation(SHG)intensity to 30%under band-gap resonance excitation.While with off-resonance excitation,the SHG intensity would enhance up to 130%,which is conjectured to be induced by the interlayer excitation between MoS_(2) and graphene.Our investigation provides an effective method for controlling nonlinear optical properties of two-dimensional materials and therefore facilitates their future applications in optoelectronic and photonic devices.展开更多
基金Project supported by Beijing Natural Science Foundation,China(Grant No.JQ19004)Beijing Excellent Talents Training Support,China(Grant No.2017000026833ZK11)+8 种基金the National Natural Science Foundation of China(Grant Nos.52025023,51991340,and 51991342)the National Key Research and Development Program of China(Grant Nos.2016YFA0300903 and 2016YFA0300804)the Key R&D Program of Guangdong Province,China(Grant Nos.2019B010931001,2020B010189001,2018B010109009,and 2018B030327001)the Beijing Municipal Science&Technology Commission,China(Grant No.Z191100007219005)the Beijing Graphene Innovation Program(Grant No.Z181100004818003)Bureau of Industry and Information Technology of Shenzhen(Graphene platform 201901161512)Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2016ZT06D348)the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant No.KYTDPT20181011104202253)the China Postdoctoral Science Foundation(Grant No.2020M680177)。
文摘Nonlinear optical frequency mixing,which describes new frequencies generation by exciting nonlinear materials with intense light field,has drawn vast interests in the field of photonic devices,material characterization,and optical imaging.Investigating and manipulating the nonlinear optical response of target materials lead us to reveal hidden physics and develop applications in optical devices.Here,we report the realization of facile manipulation of nonlinear optical responses in the example system of MoS_(2) monolayer by van der Waals interfacial engineering.We found that,the interfacing of monolayer graphene will weaken the exciton oscillator strength in MoS_(2) monolayer and correspondingly suppress the second harmonic generation(SHG)intensity to 30%under band-gap resonance excitation.While with off-resonance excitation,the SHG intensity would enhance up to 130%,which is conjectured to be induced by the interlayer excitation between MoS_(2) and graphene.Our investigation provides an effective method for controlling nonlinear optical properties of two-dimensional materials and therefore facilitates their future applications in optoelectronic and photonic devices.
基金supported by the National Key R&D Program of China(2022YFA1403500,2018YFA0703700,2022YFA1405600,and 2021YFA1202900)the National Natural Science Foundation of China(52025023,12274456,51991342,52021006,92163206,11888101,T2188101,12104018,52250398,52203331,and 91964203)+2 种基金Guangdong Major Project of Basic and Applied Basic Research(2021B0301030002)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB33000000)Beijing Municipal Science and Technology Project(Z221100005822003)。