The MoNbTaTiV refractory high-entropy alloy(RHEA)with ultra-fine grains and homogeneous microstructure was successfully fabricated by mechanical alloying(MA)and spark plasma sintering(SPS).The microstructural evolutio...The MoNbTaTiV refractory high-entropy alloy(RHEA)with ultra-fine grains and homogeneous microstructure was successfully fabricated by mechanical alloying(MA)and spark plasma sintering(SPS).The microstructural evolutions,mechanical properties and strengthening mechanisms of the alloys were systematically investigated.The nanocrystalline mechanically alloyed powders with simple bodycentered cubic(BCC)phase were obtained after 40 h MA process.Afterward,the powders were sintered using SPS in the temperature range from 1500℃to 1700℃.The bulk alloys were consisted of submicron scale BCC matrix and face-centered cubic(FCC)precipitation phases.The bulk alloy sintered at 1600℃had an average grain size of 0.58μm and an FCC precipitation phase of 0.18μm,exhibiting outstanding micro-hardness of 542 HV,compressive yield strength of 2208 MPa,fracture strength of 3238 MPa and acceptable plastic strain of 24.9%at room temperature.The enhanced mechanical properties of the MoNbTaTiV RHEA fabricated by MA and SPS were mainly attributed to the grain boundary strengthening and the interstitial solid solution strengthening.It is expectable that the MA and SPS processes are the promising methods to synthesize ultra-fine grains and homogenous microstructural RHEA with excellent mechanical properties.展开更多
To improve accuracy and efficiency in power systems dynamic modeling,the distributed online modeling approach is a good option.In this approach,the power system is divided into sub-grids,and the dynamic models of the ...To improve accuracy and efficiency in power systems dynamic modeling,the distributed online modeling approach is a good option.In this approach,the power system is divided into sub-grids,and the dynamic models of the sub-grids are built independently within the distributed modeling system.The subgrid models are subsequently merged,after which the dynamic model of the whole power system is finally constructed online.The merging of the networks plays an important role in the distributed online dynamic modeling of power systems.An efficient multi-area networks-merging model that can rapidly match the boundary power flow is proposed in this paper.The iterations of the boundary matching during network merging are eliminated due to the introduction of the merging model,and the dynamic models of the sub-grid can be directly“plugged in”with each other.The results of the calculations performed in a real power system demonstrate the accuracy of the integrated model under both steady and transient states.展开更多
The continuous variations of dissolved oxygen (DO), manganese (Mn), pH, and their effect on manganese removal by different water treatment processes are investigated. The results show that the declined DO concentr...The continuous variations of dissolved oxygen (DO), manganese (Mn), pH, and their effect on manganese removal by different water treatment processes are investigated. The results show that the declined DO concentration and pH value in the bottom of reservoir results in the increasing release of Mn from sediment to source water. Manganese concentration increased from 0.1 to 0.4 mg. L i under the condition that DO concentration decreased from 12.0 to 2.0mg.LI in raw water. The different water treatment processes exhibited different efficiency on manganese removal. The processes with recycling of the suspended sludge, low elevation velocity in settling tank and slow filter rate, will benefit the manganese removal. During a high release of manganese in raw water, traditional coagulation-sedimentation and filtration could not completely remove Mn, although granular activated carbon filtration (GAC) had been applied. At that case, preoxidation with chlorine or potassium permanganate (KMnO4) was necessary to address the high manganese concentration.展开更多
基金supported financially by the National Natural Science Foundation of China (No.51875122)
文摘The MoNbTaTiV refractory high-entropy alloy(RHEA)with ultra-fine grains and homogeneous microstructure was successfully fabricated by mechanical alloying(MA)and spark plasma sintering(SPS).The microstructural evolutions,mechanical properties and strengthening mechanisms of the alloys were systematically investigated.The nanocrystalline mechanically alloyed powders with simple bodycentered cubic(BCC)phase were obtained after 40 h MA process.Afterward,the powders were sintered using SPS in the temperature range from 1500℃to 1700℃.The bulk alloys were consisted of submicron scale BCC matrix and face-centered cubic(FCC)precipitation phases.The bulk alloy sintered at 1600℃had an average grain size of 0.58μm and an FCC precipitation phase of 0.18μm,exhibiting outstanding micro-hardness of 542 HV,compressive yield strength of 2208 MPa,fracture strength of 3238 MPa and acceptable plastic strain of 24.9%at room temperature.The enhanced mechanical properties of the MoNbTaTiV RHEA fabricated by MA and SPS were mainly attributed to the grain boundary strengthening and the interstitial solid solution strengthening.It is expectable that the MA and SPS processes are the promising methods to synthesize ultra-fine grains and homogenous microstructural RHEA with excellent mechanical properties.
基金This work was supported by the National Key Basic Research Program of China(973 Program)(2013CB228204)the National Natural Science Foundation of China(51137002,51190102,51407060).
文摘To improve accuracy and efficiency in power systems dynamic modeling,the distributed online modeling approach is a good option.In this approach,the power system is divided into sub-grids,and the dynamic models of the sub-grids are built independently within the distributed modeling system.The subgrid models are subsequently merged,after which the dynamic model of the whole power system is finally constructed online.The merging of the networks plays an important role in the distributed online dynamic modeling of power systems.An efficient multi-area networks-merging model that can rapidly match the boundary power flow is proposed in this paper.The iterations of the boundary matching during network merging are eliminated due to the introduction of the merging model,and the dynamic models of the sub-grid can be directly“plugged in”with each other.The results of the calculations performed in a real power system demonstrate the accuracy of the integrated model under both steady and transient states.
文摘The continuous variations of dissolved oxygen (DO), manganese (Mn), pH, and their effect on manganese removal by different water treatment processes are investigated. The results show that the declined DO concentration and pH value in the bottom of reservoir results in the increasing release of Mn from sediment to source water. Manganese concentration increased from 0.1 to 0.4 mg. L i under the condition that DO concentration decreased from 12.0 to 2.0mg.LI in raw water. The different water treatment processes exhibited different efficiency on manganese removal. The processes with recycling of the suspended sludge, low elevation velocity in settling tank and slow filter rate, will benefit the manganese removal. During a high release of manganese in raw water, traditional coagulation-sedimentation and filtration could not completely remove Mn, although granular activated carbon filtration (GAC) had been applied. At that case, preoxidation with chlorine or potassium permanganate (KMnO4) was necessary to address the high manganese concentration.