Due to the lack of inversion,mirror or other roto-inversion symmetries,chiral crystals possess a well-defined handedness which,when combined with time-reversal symmetry breaking from the application of magnetic fields...Due to the lack of inversion,mirror or other roto-inversion symmetries,chiral crystals possess a well-defined handedness which,when combined with time-reversal symmetry breaking from the application of magnetic fields,can give rise to directional dichroism of the electrical transport phenomena via the magnetochiral anisotropy.In this study,we investigate the nonreciprocal magneto-transport in microdevices of NbGe_(2),a superconductor with structural chirality.A giant nonreciprocal signal from vortex motions is observed during the superconducting transition,with the ratio of nonreciprocal resistance to the normal resistanceγreaching 6×10^(5)T^(-1)·A^(-1).Interestingly,the intensity can be adjusted and even sign-reversed by varying the current,the temperature,and the crystalline orientation.Our findings illustrate intricate vortex dynamics and offer ways of manipulation on the rectification effect in superconductors with structural chirality.展开更多
Transition metal and rare earth intermetallics have been a fertile playground for research of various quantum states.We report detailed magnetic studies on Sm Mn_(2)Ge_(2),an anisotropic itinerant magnet with multiple...Transition metal and rare earth intermetallics have been a fertile playground for research of various quantum states.We report detailed magnetic studies on Sm Mn_(2)Ge_(2),an anisotropic itinerant magnet with multiple magnetic phases.The critical behavior of the ferromagnetic phase transition is investigated by employing the modified Arrott plot with the Kouvel-Fisher method.The critical temperature TCis determined to be around 342.7 K with critical exponents ofβ=0.417 andγ=1.122,and the interaction function is found to be J(r)~r^(-4.68),suggesting the coexistence of long-range and shortrange magnetic interactions.Our results contribute to the understanding of complex magnetism in Sm Mn_(2)Ge_(2),which may provide fundamental guidance in future spintronic applications.展开更多
Geometrical frustration in low-dimensional magnetic systems has been an intriguing research aspect,where the suppression of conventional magnetic order may lead to exotic ground states such as spin glass or spin liqui...Geometrical frustration in low-dimensional magnetic systems has been an intriguing research aspect,where the suppression of conventional magnetic order may lead to exotic ground states such as spin glass or spin liquid.In this work we report the synthesis and magnetism study of the monocrystalline Mn_(2)Ga_(2)S_(5),featuring both the van derWaals structure and a bilayered triangular Mn lattice.Magnetic susceptibility reveals a significant antiferromagnetic interaction with a Curie-Weiss temperature θ_(w)~-260 K and a high spin S=5/2 Mn^(2+) state.However,no long range magnetic order has been found down to 2 K,and a spin freezing transition is found to occur at around 12 K well below its θ_(w).This yields a frustration index of f=-θ_(w)/T_(f)≈22,an indication that the system is highly frustrated.The absence of a double-peak structure in magnetic specific heat compared with the TM_(2)S_(4) compounds implies that the spin freezing behavior in Mn_(2)Ga_(2)S_(5)is a result of the competition between exchange interactions and the 2D crystalline structure.Our results suggest that the layered Mn_(2)Ga_(2)S_(5)would be an excellent candidate for investigating the physics of 2D magnetism and spin disordered state.展开更多
基金Project supported by the National Key R&D Program of China(Grant No.2022YFA1403603)the National Natural Science Foundation of China(Grant Nos.U2032213,12104461,12374129,and 12304156)+1 种基金Chinese Academy of Sciences(Grant Nos.YSBR-084,and JZHKYPT-2021-08)A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province.
文摘Due to the lack of inversion,mirror or other roto-inversion symmetries,chiral crystals possess a well-defined handedness which,when combined with time-reversal symmetry breaking from the application of magnetic fields,can give rise to directional dichroism of the electrical transport phenomena via the magnetochiral anisotropy.In this study,we investigate the nonreciprocal magneto-transport in microdevices of NbGe_(2),a superconductor with structural chirality.A giant nonreciprocal signal from vortex motions is observed during the superconducting transition,with the ratio of nonreciprocal resistance to the normal resistanceγreaching 6×10^(5)T^(-1)·A^(-1).Interestingly,the intensity can be adjusted and even sign-reversed by varying the current,the temperature,and the crystalline orientation.Our findings illustrate intricate vortex dynamics and offer ways of manipulation on the rectification effect in superconductors with structural chirality.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA1600204)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302802)+2 种基金the National Natural Science Foundation of China(Grant Nos.U1832214,U2032213,12104461,and 12074135)the High Magnetic Field Laboratory of Anhuisupported by the Start-up Project of Anhui University(Grant No.S020318001/020)。
文摘Transition metal and rare earth intermetallics have been a fertile playground for research of various quantum states.We report detailed magnetic studies on Sm Mn_(2)Ge_(2),an anisotropic itinerant magnet with multiple magnetic phases.The critical behavior of the ferromagnetic phase transition is investigated by employing the modified Arrott plot with the Kouvel-Fisher method.The critical temperature TCis determined to be around 342.7 K with critical exponents ofβ=0.417 andγ=1.122,and the interaction function is found to be J(r)~r^(-4.68),suggesting the coexistence of long-range and shortrange magnetic interactions.Our results contribute to the understanding of complex magnetism in Sm Mn_(2)Ge_(2),which may provide fundamental guidance in future spintronic applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1832214,11774007,U2032213,and 12104461).
文摘Geometrical frustration in low-dimensional magnetic systems has been an intriguing research aspect,where the suppression of conventional magnetic order may lead to exotic ground states such as spin glass or spin liquid.In this work we report the synthesis and magnetism study of the monocrystalline Mn_(2)Ga_(2)S_(5),featuring both the van derWaals structure and a bilayered triangular Mn lattice.Magnetic susceptibility reveals a significant antiferromagnetic interaction with a Curie-Weiss temperature θ_(w)~-260 K and a high spin S=5/2 Mn^(2+) state.However,no long range magnetic order has been found down to 2 K,and a spin freezing transition is found to occur at around 12 K well below its θ_(w).This yields a frustration index of f=-θ_(w)/T_(f)≈22,an indication that the system is highly frustrated.The absence of a double-peak structure in magnetic specific heat compared with the TM_(2)S_(4) compounds implies that the spin freezing behavior in Mn_(2)Ga_(2)S_(5)is a result of the competition between exchange interactions and the 2D crystalline structure.Our results suggest that the layered Mn_(2)Ga_(2)S_(5)would be an excellent candidate for investigating the physics of 2D magnetism and spin disordered state.